Orbit Spaces Arising from Isometric Actions on Hyperbolic Spaces

Reza Mirzaie^{*}, Mojtaba Heydari; Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

Received: 30 Juan 2017 Revised: 8 Oct 2017

Abstract

Let $G \times M \to M$ be a differentiable action of a Lie group G on a differentiable manifold M and consider the orbit space $\frac{M}{G}$ with the quotient topology. Dimension of $\frac{M}{G}$ is called the cohomogeneity of the action of G on M. If M is a differentiable manifold of cohomogeneity one under the action of G a compact and connected Lie group, then the orbit space $\frac{M}{G}$ is homeomorphic to one of the spaces [0,1], (0,1], S^1 or R. In this paper we suppose that the hyperbolic space H^n is of cohomogeneity two under the action of G, a connected and closed subgroup of $Iso(H^n)$. Then we prove that its orbit space is homeomorphic to R^{n-2} or there are nonnegative integers m, e such that some orbits are diffeomorphic to R^e , and the other orbits are diffeomorphic to R^e , where B may be a sphere, a homogeneous hypersurface of sphere or a helix in some Euclidean space.

Keywords: Manifold, Hyperbolic space, Cohomogeneity, Orbit space, Isometry

*Corresponding author: r.mirzaei@sci.ikiu.ac.ir