On necessity of L-stationarity in Nonlinear Optimization with a Sparsity Constraint

Abbas Khademi, Majid Soleimani-damaneh^{*} School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

Received: 18 June 2018 Accepted: 29 January 2018

Extended Abstract

Paper pages (387-392)

In this paper, we investigate a necessary optimality condition for a specific problem in nonlinear programming, called sparsity constrained problem. This model involves minimizing a continuously differentiable function over a sparsity constraint. We show that L-stationarity is necessary for optimality in sparsity constrained problems in general. This important property has been proved in the literature under Lipschitzness of the gradient mapping.

Preliminaries

Consider the problem

(P):
$$\begin{cases} \min f(x) \\ \text{s.t. } \|x\|_0 \le s \end{cases}$$

in which f: $\mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function and s>0 is a given positive integer less than *n*. The zero norm of $x \in \mathbb{R}^n$ is defined as

$$\|x\|_0 \equiv \#\{i : x_i \neq 0\}$$

Furthermore, the support of $x \in \mathbb{R}^n$ is defined by

$$I_1(x) \coloneqq \{i : x_i \neq 0\}$$

The complement of $I_1(x)$ is

$$I_o(x) \coloneqq \{i : x_i = 0\}.$$

The set of feasible solutions of (P) is

$$C_s \coloneqq \{x : \|x\|_0 \le s\}.$$

The orthogonal projection operator corresponding to the nonempty closed set $D \subseteq \mathbb{R}^n$, denoted by $P_D(.)$, is defined as

$$P_D(y) \coloneqq \operatorname{argmin}_{x \in D} \|y - x\|^2, \ y \in \mathbb{R}^n.$$

Necessary optimality condition

In the whole paper, we assume that the objective function of (P) in bounded blew over \mathbb{R}^n .

Definition. [1] The vector $x^* \in C_s$ is called a L-stationary point of (P) if $x^* \in P_{C_s}(x^* - \frac{1}{t}\nabla f(x^*)).$

Assumption (*). The operator
$$\nabla f(.)$$
 is Lipschitz with modulus L_f on \mathbb{R}^n , i.e

$$\forall x, y \in \mathbb{R}^n : \quad \|\nabla f(x) - \nabla f(y)\| \le L_f \|x - y\|.$$

In [1], it has been shown that under Assumption (*), each optimal solution of (P) is an L-stationary point with $L > L_f$.

Theorem 1. [1] Suppose that *f* is continuously differentiable, and Assumption (*) holds for $L > L_f$. If x^* is an optimal solution of (P), then

- i) x^* is an L-stationary point.
- ii) The set $P_{C_s}\left(x^* \frac{1}{L}\nabla f(x^*)\right)$ is a singleton.

Theorem 2 proves the necessity of L-stationarity for optimality in Problem (P) without Lipschitz assumption. This is our main result.

Theorem 2. Assume that *f* is continuously differentiable. If x^* is an optimal solution of (P), then there exists some L>0 such that x^* is an L-stationary point.

Notice that L-stationary may not be sufficient for optimality. The following example clarifies the matter.

Example. Suppose that $f(x, y) = (x - 10)^2 + (y - 1)^2$ and s = 1. Then $x^* = (0, 1)$ is an L-stationary point for sufficiently large L>0. Indeed,

$$x^* - \frac{1}{L}\nabla f(x^*) = \begin{pmatrix} 0\\1 \end{pmatrix} - \frac{1}{L} \begin{pmatrix} -20\\0 \end{pmatrix} = \begin{pmatrix} \frac{20}{L}\\1 \end{pmatrix},$$

and so, for sufficiently large L>0,

$$P_{C_s}\left(x^* - \frac{1}{L}\nabla f(x^*)\right) = x^*.$$

On the other hand,

$$f(0,1) = 100 > 1 = f(10,0)$$

So, there exists some L>0 such that $x^* = (0,1)$ is an L-stationary point, while this vector is not optimal.

Keywords: Nonlinear programming, Sparsity constrained problems, L-stationarity, Optimality condition

^{*}Corresponding author: soleimani@khayam.ut.ac.ir