Amenability and Weak Amenability of the Semigroup Algebra $\ell^1(S_T)$

*Mohammadi S.M.; Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran,
Laali J.; Department of Mathematics, Faculty of Mathematical Science and Computer, Kharazmi University

Received: 18 Nov 2013 Revised: 10 Nov 2014

Abstract

Let S be a semigroup with a left multiplier T on S. A new product on S is defined by T related to S and T such that S and the new semigroup S_T have the same underlying set as S. It is shown that if T is injective then $\ell^1(S_T) \cong \ell^1(S)\bar{T}$ where, \bar{T} is the extension of T on $\ell^1(S)$. Also, we show that if T is bijective, then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is so. Moreover, if S completely regular, then $\ell^1(S_T)$ is weakly amenable.

Mathematics Subject Classification: 43A20, 43A22, 43A07. 2010

Keywords: Semigroup, Semigroup algebra, Multiplier, Amenability, Weak amenability.

Introduction

Let S be a semigroup and T be a left multiplier on S. We present a general method of defining a new product on S which makes S a semigroup. Let S_T denote S with the new product. These two semigroups are sometimes different and we try to find conditions on S and T such that the semigroups S and S_T have the same properties. This idea has started by Birtel in [1] for Banach algebras and continued by Larsen in [11]. Recently, this notion developed by some authors, for more details see [1], [10], [11], [12] and [15]. One of the best result in this work expresses that $L^1(G)_T$ is Arens regular if and only if G is a compact group [10]. We continue this direction on the regularity of S and S_T and the amenability of their semigroup algebras.

The term of semigroup will be a non-empty set S endowed with an associative binary operation on S, defined by $(s, t) \rightarrow st$. If S is also a Hausdorff topological space and the binary operation is jointly continuous, then S is called a topological semigroup.
Let $p \in S$. Then p is an idempotent if $p^2 = p$. The set of all idempotents of S is denoted by $E(S)$.

An element e is a left (right) identity if $es = s$ (resp. $se = s$) for all $s \in S$. An element eS is an identity if it is a left and a right identity. An element z is a left (resp. right) zero if $zs = z$ (resp. $sz = z$) for all $s \in S$. An element zeS is a zero if it is a left and a right zero. We denote any zero of S by 0_S (or z_S). An element pcS is a regular element of S if there exists tcS such that $p = ptp$ and p is completely regular if it is regular and $pt = tp$. We say that $p \in S$ has an inverse if there exists tcS such that $p = ptp$ and $t = tpt$. Note that the inverse of element $p \in S$ need not be unique. If pcS has an inverse, then p is regular and vice versa. Since, if $p \in S$ is regular, there exists $s \in S$ such that $p = psp$. Let $t = sps$. Then $p = psp = (p(sp)s)p = ptp$, $t = sps = s(psp)s = (spsp)p(sps) = tpt$.

So p has an inverse. We say that S is a regular (resp. completely regular) semigroup if each pcS is regular (resp. completely regular). Also S is an inverse semigroup if each $p \in S$ has a unique inverse. The map $T : S \rightarrow S$ is called a left (resp. right) multiplier if

$$T(st) = T(s)t \quad (\text{resp. } T(st) = sT(t)) \quad (s, tcS).$$

The map $T : S \rightarrow S$ is a multiplier if it is a left and right multiplier. Let S be a topological semigroup. The net $(e_\alpha) \subseteq S$ is a left (resp. right) approximate identity if $\lim_{\alpha} e_\alpha t = t$ (resp. $\lim_{\alpha} te_\alpha = t$) (tcS). The net $(e_\alpha) \subseteq S$ is an approximate identity if it is a left and a right approximate identity.

Let S be a discrete semigroup. We denote by $l^1(S)$ the Banach space of all complex function $f : S \rightarrow \mathbb{C}$ having the form

$$f = \sum_{s \in S} f(s)\delta_s,$$

such that $\sum_{s \in S}|f(s)| = ||f||_1$ is finite, where δ_s is the point mass at $\{s\}$. For $f, g \in l^1(S)$ we define the convolution product on $l^1(S)$ as follow:

$$f * g(s) = \sum_{t_1, t_2 = s} f(t_1)g(t_2) \quad (scS),$$

with this product $l^1(S)$ becomes a Banach algebra and is called the semigroup algebra on S.

Remark 1.1. If $f \in l^1(S)$ then $f = 0$ on S except at most on a countable subset of S. In other words, the set $A = \{scS : f(s) \neq 0\}$ is at most countable. Since, if $A_n = \{scS : |f(s)| \geq \frac{1}{n}\}$, $A = \bigcup_{n \in \mathbb{N}}A_n$. Set $||f||_1 = M$ and $n \in \mathbb{N}$ is fixed. Then we have

$$M = \sum_{s \in S} |f(s)| \geq \sum_{s \in A_n} |f(s)| \geq \sum_{s \in A_n} \frac{1}{n} = \frac{1}{n} |A_n|,$$
where $|A_n|$ is the cardinality of A_n. So $|A_n| \leq nM$. Hence A_n is a finite subset of S and thus A is at most countable.

Semigroup S_T

Let $T \in \text{Mul}_1(S)$. Then we define a new binary operation "\circ" on S as follow:

$$s \circ t = s \circ T(t) = (s, t \in S).$$

The set S equiped with the new operation "\circ" is denoted by S_T and sometimes called "induced semigroup of S". Now we have the following results.

Theorem 2.1. Let S be a Semigroup. Then (i) if $T \in \text{Mul}_1(S)$ then S_T is a semigroup.

The converse is true if S is left cancellative and T is surjective.

(ii) If S_T is left cancellative and T is surjective, then $T^{-1} \in \text{Mul}_1(S)$.

(iii) If S is a topological semigroup and S_T has a left approximate identity then $T^{-1} \in \text{Mul}_1(S)$.

Proof.

i) Let $Te\text{Mul}_1(S)$ and take $r,s,t \in S$. Then

$$r \circ (s \circ t) = r \circ T(s \circ t) = r \circ T(s \circ T(t)) = r \circ T(s) \circ T(t) = (r \circ s) \circ t$$

So, S_T is a semigroup.

Conversely, suppose that S is left cancellative and take $r,s,t \in S$. Since T is surjective, there exists $u \in S$ such that $T(u) = t$. Then

$$rT(st) = rT(sT(u)) = r \circ (s \circ u) = (r \circ s) \circ u = (rT(s))T(u) = rT(st).$$

By the left cancellativity of S, we have $T(st) = T(s)T(t) = (r,s \in S)$. So, T is a left multiplier.

ii) We must prove that T is injective. To do this end, take $r,s,u \in S$ and let $T(r) = T(s)$.

Then $u \circ r = uT(r) = uT(s) = u \circ s$. So $r = s$, since S_T is left cancellative. Hence T^{-1} exists.

Now, we show that $T^{-1} \in \text{Mul}_1(S)$. Take $r,s \in S$. Then

$$T^{-1}(rs) = T^{-1}[TT^{-1}(r)s] = T^{-1}[T(T^{-1}(r)s)] = (T^{-1}T)[T^{-1}(r)s] = T^{-1}(r)s.$$

iii) It is enough to show that T is injective. Take $r,s \in S$ and suppose that $T(r) = T(s)$.

Then

$$r = \lim_{\alpha} e_{\alpha} \circ r = \lim_{\alpha} e_{\alpha} T(r) = \lim_{\alpha} e_{\alpha} T(s) = \lim_{\alpha} e_{\alpha} \circ s = s.$$
There are many properties that induced from S to semigroup S_T. But sometimes they are different.

Theorem 2.2. Let S be a Hausdorff topological semigroup and $\text{TeMul}_1(S)$. If S is commutative then so is S_T. The converse is true if $\overline{T(S)} = S$.

Proof. Suppose S is commutative and take $r, s \in S$. Then
$$r \circ s = r T(s) = T(s)r = T(sr) = T(rs) = T(r) s = sT(r) = s \circ r .$$
So, S_T is commutative.

Conversely, Let S_T be commutative and take $r, s \in S$. Then there exist nets (r_α) and (s_β) in S such that $\lim_\alpha T(r_\alpha) = r$ and $\lim_\beta T(s_\beta) = s$.

So, we have
$$rs = \lim_\alpha \lim_\beta T(r_\alpha \circ s_\beta) = \lim_\beta \lim_\alpha T(s_\beta \circ r_\alpha) = \lim_\alpha \lim_\beta T(s_\beta) T(r_\alpha) = s \circ r .$$
Thus S is commutative.

In the sequel, we investigate some relations between two semigroup S and S_T according to the role of the left multiplier T.

Theorem 2.3. Let S be a semigroup and $\text{TeMul}_1(S)$. Then

(i) If T is surjective and S_T is an inverse semigroup then S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

(ii) If S_T is an inverse semigroup and T is injective then $T(S)$ is an inverse subsemigroup of S.

(iii) If T is bijective then S_T is an inverse semigroup if and only if S is an inverse semigroup.

Proof. i) Suppose that S_T is an inverse semigroup and T is surjective. Define the map $\varphi: S_T \to S$ by $\varphi(s) = T(s)$. Take $r, s \in S$, then
$$\varphi(r \circ s) = T(r \circ s) = T(r) T(s) = \varphi(r) \varphi(s) .$$
So, φ is an epimorphism from S_T onto S, since T is surjective. By theorem 5.1.4[7], S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

ii) Suppose that T is injective and S_T is an inverse semigroup. Evidently, $T(S)$ is a subsemigroup of S. We show that it is an inverse semigroup. Take $s \in T(S)$. There exists $t \in S$ such that $s = T(t)$. Also, there exists a unique element $u \in S$ such that $t = u \circ t$, since S_T is an inverse semigroup. Therefore, $T(t) = T(t) T(u) T(t)$, or $s = s \circ T(u) \circ s$.

Of course, $T(u)$ is unique because $u \in S$ is unique and T is injective. Hence $T(S)$ is an inverse subsemigroup of S.

iii) Suppose that T is bijective and let S_T be an inverse semigroup. Since T is injective and surjective, by (i) and (ii), $S = T(S)$ is an inverse semigroup.

Conversely, suppose that S is an inverse semigroup. Since T is bijective, by theorem 2.1(ii), $T^{-1} \in \text{Mul}_l(S)$. So $\varphi^{-1}: S \to S_T$ defined by $\varphi^{-1}(s) = T^{-1}(s)$ is an epimorphism. Hence by (i) S_T is an inverse semigroup.

We say that $T \in \text{Mul}_l(S)$ is an inner left multiplier if it has the form $T = L_s$ for some $s \in S$ where $L_s(t) = st$ (teS).

If $T \in \text{Mul}_l(S)$ is inner, then each ideal of S is permanent under T; that is $T(I) \subseteq I$ for all ideal I of S. It is easily to see that if S has an identity, then each $T \in \text{Mul}_l(S)$ is inner.

Let S be a semigroup. Then S is called semisimple if $I^2 = I$ for all ideal I of S (see [9], page 95 for more details).

Theorem 2.4. Let S be a semigroup with an identity and $T \in \text{Mul}_l(S)$. If S_T is semisimple, then S is so. The converse is true if S_T is left cancellative and T is surjective.

Proof. Since S is unital there exists $\mu \in S$ such that $T = L_\mu$. Suppose that S_T is semisimple and I is an ideal of S. Then

$$I \circ S = I \cap (S(T) \subseteq I S \subseteq I).$$

Similarly, $S \circ I \subseteq I$. It follows that I is an ideal of S_T. By the hypothesis $(I_T)^2 = I \circ I = I$. Now, take $r \in I$ then there are $s, t \in I$ such that

$$r = s \circ t = sT(t) = s(\mu t) \in I^2.$$

So we show that $I^2 = I$ and hence S is semisimple.

Conversely, assume that S_T is left cancellative and $T \in \text{Mul}_l(S)$ is surjective then by theorem 2.1(ii), $T^{-1} \in \text{Mul}_l(S)$. So, there exists $b \in S$ such that $T^{-1} = L_b$. Suppose that $\bar{S} = S_{T^{-1}}$. Then we have

$$S = S_{T^{-1}} = (S_T)_{T^{-1}} = \bar{S}_{T^{-1}}.$$

By hypothesis and above the proof, $\bar{S} = S_{T^{-1}}$ is semisimple.

Semigroup Algebra $\ell^1(S_T)$

We say that a discrete semigroup S is amenable if there exists a positive linear functional on $\ell^\infty(S)$ called a mean such that

$$m(1) = 1 = m(l_s f) = m(f), m(r_s f) = m(f)$$

for each $s \in S$, where $l_s f(t) = f(st)$ and $r_s f(t) = f(ts)$ for all $t \in S$. The definition of amenable group is similar to semigroup case. Refer to [12] for more details.
Let \(\mathcal{A} \) be a Banach algebra and let \(X \) be a Banach \(\mathcal{A} \)–bimodule. A derivation from \(\mathcal{A} \) to \(X \) is a linear map \(D: \mathcal{A} \to X \) such that
\[
D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathcal{A}).
\]
A derivation \(D \) is inner if there exists \(x \in X \) such that
\[
D(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).
\]
The Banach algebra \(\mathcal{A} \) is amenable if every bounded derivation \(D: \mathcal{A} \to X^* \) is inner for all Banach \(\mathcal{A} \)–bimodule \(X \). Where \(X^* \) is the dual space of \(X \). We say that the Banach algebra \(\mathcal{A} \) is weakly amenable if any bounded derivation \(D \) from \(\mathcal{A} \) to \(\mathcal{A}^* \) is inner. For more details see [12], [16].

If \(S \) is a commutative semigroup, by theorem 5.8 of [8] \(\ell^1(S) \) is called semisimple if and only if for all \(x, y \in S \), \(x^2 = y^2 = xy \) implies \(x = y \).

Theorem 3.1. Let \(S \) be a commutative semigroup and let \(T \in \text{Mul}_l(S) \) be injective. Then \(\ell^1(S) \) is semisimple if and only if \(\ell^1(S_T) \) is semisimple.

Proof. Take \(r, s \in S \). Then \(r^2 = s^2 = rs \) if and only if \(T(r^2) = T(s^2) = T(r)T(s) \) or equivalently \(r_0 r = s_0 s = r_0 s \), because \(T \) is injective. So, by theorem 5.8 [8], \(\ell^1(S) \) is semisimple if and only if \(\ell^1(S_T) \) is semisimple.

Theorem 3.2. Let \(S \) be a discrete semigroup and \(T \in \text{Mul}_l(S) \). Then
(i) The left multiplier \(T \) has an extension \(\bar{T} \in \text{Mul}_l \left(\ell^1(S) \right) \) with the norm decreasing.
(ii) The left multiplier \(T \) is injective if and only if so is \(\bar{T} \).
(iii) If \(T \) is injective then \(\bar{T} \) is an isometry and also \(\ell^1(S_T) \) and \(\left(\ell^1(S) \right)_T \) are isomorphic.

Proof. (i) An arbitrary element \(f \in \ell^1(S) \) is of the form \(f: S \to \mathbb{C} \) such that \(f(x) = 0 \) except at the most countable subset \(A \) of \(S \). If \(A \) is a finite subset of \(S \) then \(f = \sum_{k=1}^{n} f(x_k) \delta_{x_k} \) for some fixed \(n \in \mathbb{N} \). So in general we have
\[
f = \sum_{x \in S} f(x) \delta_x = \sum_{x \in A} f(x) \delta_x = \sum_{k=1}^{\infty} f(x_k) \delta_{x_k}.
\]
Now, for each \(n \in \mathbb{N} \), let \(f_n = \sum_{k=1}^{n} f(x_k) \delta_{x_k} \) and define \(\bar{T}: \ell^1(S) \to \ell^1(S) \) by
\[
\bar{T}(\delta_x) = \delta_{T(x)} \quad (x \in S),
\]
\[
\bar{T}(f_n) = \sum_{k=1}^{n} f(x_k) \delta_{x_k} = \bar{f}_n.
\]
For each \(m, n \in \mathbb{N} \) where \(n \geq m \), we have
\[
\| \bar{T}(f_n) - \bar{T}(f_m) \|_1 = \| \bar{f}_n - \bar{f}_m \|_1 = \| \sum_{k=m}^{n} f(x_k) \delta_{x_k} \|_1 = \| \sum_{k=m}^{n} f(x_k) \delta_{T(x_k)} \|
\]
\[
\leq \sum_{k=m}^{n} |f(x_k)| = \| f_n - f_m \|_1.
\]
So \(\{\tilde{T}(f_n)\}_n \) is a Cauchy sequence and it is convergent. Now, we define \(\tilde{T}(f) = \lim_n \tilde{T}_n \).

Then the definition is well defined. Hence
\[
\tilde{T}(f) = \sum_{k=1}^{\infty} f(x_k) \delta_{x_k} = \tilde{f}.
\]
also
\[
\|\tilde{f}\|_1 = \sum_{x_k \in A} |f(x_k)| = \|f\|_1 \quad \text{or} \quad \|\tilde{T}(f)\|_1 \leq \|f\|_1.
\]
It shows that \(\tilde{T} \) is norm decreasing.

In the following, we extend \(\tilde{T} \) by linearity. Let \(f, g \in \ell^1(S) \). Then there are two at most countable sub set \(A, B \) of \(S \) such that
\[
f = \sum_{x \in A} f(x) \delta_x, \quad g = \sum_{x \in B} g(x) \delta_x.
\]
Suppose that \(D = A \cup B \). So we have \(f + g = \sum_{x \in D} (f(x) + g(x)) \delta_x \).

Then, it follows that
\[
\tilde{T}(f + g) = \tilde{f} + \tilde{g} = \sum_{x \in D} (f(x) + g(x)) \tilde{T}(\delta_x) = \sum_{x \in A} f(x) \tilde{T}(\delta_x) + \sum_{x \in B} g(x) \tilde{T}(\delta_x)
\]
\[
= \tilde{f} + \tilde{g}.
\]
Also, if \(\alpha \in \mathbb{C} \), we have
\[
\tilde{T}(\alpha f) = \alpha \tilde{T}(f) = \sum_{x \in A} \alpha f(x) \tilde{T}(\delta_x) = \alpha \sum_{x \in A} f(s) \tilde{T}(\delta_x) = \alpha \tilde{T}(f).
\]
Therefore, \(\tilde{T} \) is a bounded linear isometry.

Now, we prove that \(\mathcal{T} \in \text{Mul}_1(\ell^1(S)) \). Take \(x, y \in S \). Then
\[
\tilde{T}(\delta_x * \delta_y) = \tilde{T}(\delta_{xy}) = \delta_{T(xy)} = \delta_{T(x)y} = \delta_{T(x)} * \delta_y = \tilde{T}(\delta_x) * \delta_y.
\]
Let \(y \in S \) be fixed and \(f, g \in \ell^1(S) \). Then
\[
\tilde{T}(f * \delta_y) = \tilde{T} \left(\sum_{x \in A} f(x) \delta_{xy} \right) = \sum_{x \in A} f(x) \tilde{T}(\delta_{xy})
\]
\[
= \left(\sum_{x \in A} \tilde{T}(\delta_x) \right) * \delta_y = \tilde{T}(f) * \delta_y.
\]
In the general case, we have
\[
\tilde{T}(f * g) = \tilde{T} \left(\sum_{x \in A} f(x) (\sum_{y \in B} g(y)) \delta_{xy} \right)
\]
\[
= \sum_{x \in A} f(x) \tilde{T}(\delta_x) * \sum_{y \in B} g(y) \delta_y = \tilde{T}(f) * g.
\]
This shows that \(\tilde{T} \) is a multiplier on \(\ell^1(S) \).

(ii) Let \(T \) be injective. Take \(x, y \in S \) and suppose that \(\tilde{T}(\delta_x) = \tilde{T}(\delta_y) \). Then \(\delta_{T(x)} = \tilde{T}(\delta_x) = \tilde{T}(\delta_y) = \delta_{T(y)} \).

Therefore, \(T(x) = T(y) \). Since \(T \) is injective, we have \(x = y \). It follows that \(\delta_x = \delta_y \), consequently \(\tilde{T} \) is injective.

Conversely, the same argument shows that the converse holds.

(iii) Let \(T \) be injective and \(f \in \ell^1(S) \). Then there exists at most a countable subset \(A \subseteq S \) such that
Since A and $T(A)$ have the same cardinal number, $\|\tilde{T}(f)\| = \|\sum_{x \in A} f(x) \delta_x\| = \sum_{x \in A}|f(x)| = \|f\|_1$, so \tilde{T} is an isometry.

Now, we can define a new multiplication "\(\boxplus\)" on $\ell^1(S)$ as follow
\[
f \boxplus g = f \ast \tilde{T}g \quad (f, g \in \ell^1(S)).
\]
By a similar argument in theorem 1.31 [10], $\ell^1(S)$ with the new product is a Banach algebra that is denoted it by $\ell^1(S)_{\tilde{T}}$. We define the map $\Psi: \ell^1(S_T) \to \ell^1(S)_{\tilde{T}}$, by $\Psi(\delta_x) = \delta_x \quad (x \in S)$.

Take $x, y \in S$. Then
\[
\Psi(\delta_x \ast \delta_y) = \Psi(\delta_{x \ast y}) = \delta_{x_{T(y)}} = \delta_x \ast \delta_{T(y)}
\]
\[
= \delta_x \ast \tilde{T}(\delta_y) = \delta_x \boxplus \delta_y
\]
\[
= \Psi(\delta_x) \boxplus \Psi(\delta_y).
\]

So, in general case, we have
\[
\Psi(f \ast g) = \Psi(f) \boxplus \Psi(g) \quad (f, g \in \ell^1(S)).
\]
Thus, Ψ is an isomorphism. Therefore $\ell^1(S_T)$ and $\ell^1(S)_{\tilde{T}}$ are isomorphic.

Theorem 3.3. Let S be a semigroup and $T \in Mul_f(S)$ be bijective. Then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is amenable.

Proof. By theorem 3.2, we have $\ell^1(S_T) \cong \ell^1(S)_{\tilde{T}}$. Suppose that $\ell^1(S_T)$ is amenable and define $\varphi: \ell^1(S_T) \to \ell^1(S)$ by $\varphi(f) = \tilde{T}(f)$. Take $x, y \in S$. Then
\[
\varphi(\delta_x \boxplus \delta_y) = \tilde{T}(\delta_x \boxplus \delta_y) = \tilde{T}(\delta_{x_{T(y)}}) = \tilde{T}(\delta_x \ast \delta_{T(y)}) = \tilde{T}(\delta_x) \ast \delta_{T(y)}
\]
\[
= \tilde{T}(\delta_x) \ast \tilde{T}(\delta_y) = \varphi(\delta_x) \ast \varphi(\delta_y).
\]
Now, by induction and continuity of \tilde{T}, we have
\[
\varphi(f \boxplus g) = \varphi(f) \ast \varphi(g).
\]
If T is bijective, \tilde{T} is bijective. Therefore φ is an epimorphism of $\ell^1(S_T)$ onto $\ell^1(S)$.

Hence, by proposition 2.3.1 [16] $\ell^1(S)$ is amenable.

Conversely, suppose that $\ell^1(S)$ is amenable. Since T is bijective, \tilde{T} is bijective. Therefore \tilde{T}^{-1} exists. Now define $\theta: \ell^1(S) \to \ell^1(S_T) \cong \ell^1(S)_{\tilde{T}}$ by $\theta(f) = \tilde{T}^{-1}(f)$.

Take $x, y \in S$. Then
\[
\theta(\delta_x \ast \delta_y) = \tilde{T}^{-1}(\delta_{xy}) = \tilde{T}^{-1}(\delta_x)\tilde{T}^{-1}(\delta_y) = \tilde{T}^{-1}(\delta_x) \boxplus \tilde{T}^{-1}(\delta_y)
\]
\[
= \theta(\delta_x) \boxplus \theta(\delta_y).
\]
Similarly \(\theta \) is an epimorphism from \(\ell^1(S) \) onto \(\ell^1(S_T) \). By proposition 2.3.1 [16] \(\ell^1(S_T) \) is amenable.

Note that, in general, it is not known when \(\ell^1(S) \) is weakly amenable. For more details see [2].

Theorem 3.4. Let \(S \) be a semigroup and \(T \in \text{Mul}_l(S) \) be bijective. Then, if \(S \) is completely regular then \(\ell^1(S_T) \) is weakly amenable.

Proof. It is enough to prove that \(S_T \) is completely regular, then by theorem 3.6 [2], \(\ell^1(S_T) \) can be weakly amenable. Take \(s \in S \). Then there exists \(r \in S \) such that \(T(s) = T(s)T(r)T(s) \), \(T(r)T(s) = T(s)T(r) \), since \(T \) is bijective and \(S = T(S) \) is completely regular. So we have \(T(s) = T(s \circ r \circ s) \) and \(T(r \circ s) = T(s \circ r) \). Hence \(s = s \circ r \circ s \) and \(r \circ s = s \circ r \) for some \(r \in S \), since \(T \) is injective. Therefore \(S_T \) is completely regular.

Corollary 3.5. Suppose that \(S \) is a commutative completely regular semigroup and \(T \in \text{Mul}_l(S) \) is injective. Then \(\ell^1(T(S)_T) \) is weakly amenable.

Proof. [2, theorem 3.6] \(\ell^1(S) \) is weakly amenable. Define \(\varphi : S \to \ell^1(S)_T \) by

\[
\varphi(s) = T^{-1}(s) \quad (s \in S).
\]

We show that \(\varphi \) is a homomorphism. Take \(s \in S \), then we have

\[
\varphi(rs) = T^{-1}(rs) = T^{-1}(r) s = T^{-1}(r) \circ (T^{-1}s).
\]

So \(\varphi \) is a homomorphism. Then by proposition 2.1[7], \(\ell^1(T(S)_T) \) is weakly amenable.

In the case that \(S \) is a group, it is easy to see that the amenability of \(S \) implies the amenability of \(\ell^1(S_T) \). Indeed, when \(S \) is a group, by theorem 2.1, \(S_T \) is a semigroup and one can easily prove that \(S_T \) is also a group. On the other hand, \(\text{Mul}_l(S) \cong S \) because \(S \) is a unital semigroup, so each \(T \in \text{Mul}_l(S) \) is inner and of the form \(T = L_s \) for some \(s \in S \). Also \(T^{-1} = L_{a^{-1}} \) exists, since \(S \) is a group. Then the map \(\theta : S_T \to S \) defined by \(\theta(s) = T(s) \) is an isomorphism; that is \(S \cong S_T \). Thus we have the following result:

Corollary 3.6. Let \(S \) be a cancellative regular discrete semigroup. Then \(\ell^1(S) \) is amenable if and only if \(\ell^1(S_T) \) is amenable.

Proof. By [9, Exercise 2.6.11] \(S \) is a group. So the assertion holds by [15, theorem 2.1.8]
Examples

In this section we present some examples which either comments on our results or indicate necessary condition in our theorems.

4.1. There are semigroups S and $T \in \text{Mul}_l(S)$ such that the background semigroups S are not commutative but their induced semigroups S_T are commutative.

This example shows that the condition $\overline{T(S)} = S$, in theorem 2.2, can not be omitted.

Let S be the set $\{a, b, c, d, e\}$ with operation table given by

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Clearly (S, \cdot) is a non-commutative semigroup. Now, put $T = L_a$ where $L_a(x) = ax$ for all $x \in S$. One can get easily the operation table of S_T as follow:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

The operation table shows that the induced semigroup S_T is commutative and $T(S) \neq S$. Also the other induced semigroup S_T is commutative for $T = L_d$ analogously.

Now we present some important theorems from[14] that we need in the following examples:

Theorem 4.2. Let S be a semigroup. Suppose that $\ell^1(S)$ is amenable. Then

(i) S is amenable
(ii) S is regular.
(iii) $E(S)$ is finite.
(iv) $\ell^1(S)$ has an identity.

Proof. (i) That is lemma 3 in [5].
(ii) and (iii) See theorem 2 in[6].
(iv) That is corollary 10.6 in [4].

Theorem 4.3. Let S be a finite semigroup. Then the following statements are equivalent:

(i) $\ell^1(S)$ is amenable.

(ii) S is regular and \(\ell^1(S) \) is nuietal.

(ii) S is regular and \(\ell^1(S) \) is semisimple.

Proof. Refer to [3].

4.4. There are semigroups S and $T \in \operatorname{Mul}(S)$ such that S and $\ell^1(S)$ are amenable but S_T is not regular and also, $\ell^1(S_T)$ is not amenable.

This example shows that two semigroup algebras $\ell^1(S)$ and $\ell^1(S_T)$ can be different in some properties. Also, it notifies that the bijectivity of T in the theorem 3.3 is essential. Put $S = \{x_0, x_1, x_2, \ldots, x_n\}$ with the operation $x_i x_j = x_{\max\{i, j\}}$ $(0 \leq i, j \leq n, n \geq 2)$.

Then S is a semigroup. Since

$$\operatorname{Max}\{i, \operatorname{Max}\{j, k\}\} = \operatorname{Max}\{\operatorname{Max}\{i, j\}, k\} = \operatorname{Max}\{i, j, k\}.$$

We denote it by S_v. This semigroup is commutative. So by (0.18) in [12], it is amenable. S_v is a unital semigroup and has a zero; indeed, $e_s = x_0$ and $a_s = x_n$. Also, it is a regular semigroup and $\operatorname{Mul}(S_v) \cong S_v$ because S_v has an identity.

Evidently, S_v is regular since each $s \in S_v$ is idempotent. The semigroup algebra $\ell^1(S_v)$ is a unital algebra because S_v has an identity. So by theorem 4.3 (ii) $\ell^1(S_v)$ is amenable.

Now, take $T = L_{x_k}$ for a fixed $x_k \in S$ where $k \geq 1$. By theorem 2.2, $(S_v)_T$ is commutative so is amenable. We show that T is neither injective and surjective.

Take $x_i \in S_v$, then $Tx_i = x_k x_i = x_{\max\{k, i\}}$. So

$$T(S_v) = \{x_k, x_{k+1}, \ldots, x_n\} \neq S_v.$$

Hence, T is not surjective.

Again, take distinct elements x_i, x_j in S_v for some $i, j < k$ such that $T(x_i) = T(x_j).$ Then we have $x_{\max\{k, i\}} = x_{\max\{k, j\}}$ but $x_i \neq x_j.$ So T is not injective.

We prove that $(S_v)_T$ is not regular. If $(S_v)_T$ is regular, then for $x_{k-1} \in S_v$ there exists an element $x_j \in S_v$ such that

$$x_{k-1} = x_{k-1} o x_j o x_{k-1} = x_{\max\{k, j\}}.$$
That implies that $\max\{k,j\} = k - 1$; which is impossible. Consequently, by theorem 4.2 (ii) or 4.3 (ii), $\ell^1((S_v)_T)$ is not amenable.

Also, the inequality $S_v \circ S_v = \{x_k, x_{k+1}, ..., x_n\} \neq S_v$ shows that $\ell^1((S_v)_T)$ is not weakly amenable. In the next example we show that in the theorem 3.2 (iii) the condition "injectivity of " can not be omitted.

4.5 There are a semigroup S and $T \in Mul_1(S)$ such that $T \in Mul_1(S)$ is not injective and the corresponding $\overline{T} \in Mul_1\left(\ell^1(S_T)\right)$ is not an isometry.

Suppose that S_v is a semigroup as in example 4.4 and $T = L_{x_k}$ for some fixed $1 < k < n$. If $f \in \ell^1(S_v)$ then $f = \sum_{i=0}^{n} f(x_i)\delta_{x_i}$ and also $\overline{T}(f) = \sum_{i=0}^{n} f(x_i)\delta_{\overline{T}(x_i)}$. But $T(x_i) = \{x_i \mid k < i \leq n, x_k \mid 0 \leq i \leq k\}$, so

$$T(f) = \left(\sum_{i=0}^{k} f(x_i)\right)\delta_{x_k} + \sum_{i=k+1}^{n} f(x_i)\delta_{\overline{T}(x_i)}.$$

Hence

$$\|T(f)\| = \left|\sum_{i=0}^{k} f(x_i)\right| + \sum_{i=k+1}^{n} |f(x_i)| \leq \sum_{i=0}^{k} |f(x_i)| + \sum_{i=k+1}^{n} |f(x_i)| = \|f\|_1.$$

It shows that \overline{T} is not an isometry.

4.6. There are semigroups S and $T \in Mul_1(S)$ such that $\ell^1(S)$ is semisimple. But $\ell^1(S_T)$ is not semisimple. This example remind that, in theorem 3.1 the multiplier T must be injective.

Let S be a set $\{x_0, x_1, ..., x_n\}$ where $n \in \mathbb{N}$ and $n \geq 3$ is fixed. By operation given by $xy = x_{\min\{i,j\}}$, S is a commutative semigroup. Since

$$\min\{i,\min\{j,k\}\} = \min\{\min\{i,j\},k\} = \min\{i,j,k\} \quad (i,j,k \in \mathbb{N}).$$

We denote it briefly by S_\wedge. For each $x,y \in S$ the equality $x^2 = y^2 = xy$ implies $x=y$. So by Theorem 5.8 $\ell^1(S_\wedge)$ is semisimple.

Now, let $T = L_{x_k}$ for a fixed $1 \leq k < n - 1$. It is easy to see that $T(x_k) = T(x_n)$ but $x_k \neq x_n$. So the multiplier T is not injective.

We show that neither S_\wedge nor $\ell^1(S_\wedge)_T$ is semisimple.

Each ideal of S is of the form

$$I_m = \{x_0, x_1, ..., x_m\} \quad (m \leq n).$$

We claim that S_T is not semisimple. Since for each $m \in \mathbb{N}$ we have
Amenability and Weak Amenability of The Semigroup Algebra \(\ell^1(S_a) \)

\[
I_m \circ I_m = \begin{cases}
I_m & m \leq k \\
I_k & m > k
\end{cases}
\]

On the other hand, for each \(x_i, x_j \in S \) where \(i \neq j \) and \(i, j > k \), we have \(x_i \circ x_i = x_j \circ x_j = x_k \), while \(x_i \neq x_j \). Thus, Theorem 5.8 [8] shows that \(\ell^1(S_a)_T \) is not semisimple.

Acknowledgment

The authors express their thanks to Professor A. R. Medghalchi for his valuable comments. Also we thank him for some corrections of this paper.

Reference

