Amenability and Weak Amenability of the Semigroup Algebra $\ell^1(S_T)$

*Mohammadi S.M.; Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Laali J.; Department of Mathematics, Faculty of Mathematical Science and Computer, Kharazmi University

Received: 18 Nov 2013 Revised: 10 Nov 2014

Abstract

Let S be a semigroup with a left multiplier T on S. A new product on S is defined by T related to S and T such that S and the new semigroup S_T have the same underlying set as S. It is shown that if T is injective then $\ell^1(S_T) \cong \ell^1(S)\hat{T}$ where, \hat{T} is the extension of T on $\ell^1(S)$. Also, we show that if T is bijective, then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is so. Moreover, if S completely regular, then $\ell^1(S_T)$ is weakly amenable.

Mathematics Subject Classification: 43A20, 43A22, 43A07. 2010

Keywords: Semigroup, Semigroup algebra, Multiplier, Amenability, Weak amenability.

Introduction

Let S be a semigroup and T be a left multiplier on S. We present a general method of defining a new product on S which makes S a semigroup. Let S_T denote S with the new product. These two semigroups are sometimes different and we try to find conditions on S and T such that the semigroups S and S_T have the same properties. This idea has started by Birtel in [1] for Banach algebras and continued by Larsen in [11]. Recently, this notion developed by some authors, for more details see [1], [10], [11], [12] and [15]. One of the best result in this work expresses that $L^1(G)_T$ is Arens regular if and only if G is a compact group [10]. We continue this direction on the regularity of S and S_T and the amenability of their semigroup algebras.

The term of semigroup will be a non-empty set S endowed with an associative binary operation on S, defined by $(s, t) \to st$. If S is also a Hausdorff topological space and the binary operation is jointly continuous, then S is called a topological semigroup.
Let \(p \in S \). Then \(p \) is an idempotent if \(p^2 = p \). The set of all idempotents of \(S \) is denoted by \(E(S) \).

An element \(e \) is a left (right) identity if \(es = s \) (resp. \(se = s \)) for all \(s \in S \). An element \(eeS \) is an identity if it is a left and a right identity. An element \(z \) is a left (resp. right) zero if \(zs = z \) (resp. \(sz = z \)) for all \(s \in S \). An element \(zeS \) is a zero if it is a left and a right zero. We denote any zero of \(S \) by \(0_S \) (or \(z_S \)). An element \(peS \) is a regular element of \(S \) if there exists \(teS \) such that \(p = ptP \) and \(p \) is completely regular if it is regular and \(pt = tp \). We say that \(p \in S \) has an inverse if there exists \(teS \) such that \(p = ptP \) and \(t = tpt \). Note that the inverse of element \(p \in S \) need not be unique. If \(peS \) has an inverse, then \(p \) is regular and vise versa. Since, if \(p \in S \) is regular, there exists \(s \in S \) such that \(p = sps \). Let \(t = sps \). Then
\[
p = psp = (psp)sP = p(sps)p = ptP, \quad t = sps = s(psp)s = (sps)p(sps) = tpt.
\]
So \(p \) has an inverse. We say that \(S \) is a regular (resp. completely regular) semigroup if each \(peS \) is regular (resp. completely regular). Also \(S \) is an inverse semigroup if each \(p \in S \) has a unique inverse. The map \(T : S \rightarrow S \) is called a left (resp. right) multiplier if
\[
T(st) = T(s)t \quad \text{(resp. } T(st) = sT(t)) \quad (s, teS).
\]
The map \(T : S \rightarrow S \) is a multiplier if it is a left and right multiplier. Let \(S \) be a topological semigroup. The net \((e_\alpha) \subseteq S \) is a left (resp. right) approximate identity if
\[
\lim_{\alpha} e_\alpha t = t \quad \text{(resp. } \lim_{\alpha} t e_\alpha = t) \quad (teS).
\]
The net \((e_\alpha) \subseteq S \) is an approximate identity if it is a left and a right approximate identity.

Let \(S \) be a discrete semigroup. We denote by \(l^1(S) \) the Banach space of all complex function \(f : S \rightarrow \mathbb{C} \) having the form
\[
f = \sum_{s \in S} f(s) \delta_s,
\]
such that \(\sum_{s \in S} |f(s)| = \|f\|_1 \) is finite, where \(\delta_s \) is the point mass at \(\{s\} \). For \(f, g \in l^1(S) \) we define the convolution product on \(l^1(S) \) as fallow:
\[
f \ast g(s) = \sum_{t_1, t_2 = s} f(t_1)g(t_2), \quad (sE).
\]
with this product \(l^1(S) \) becomes a Banach algebra and is called the semigroup algebra on \(S \).

Remark 1.1. If \(f \in l^1(S) \) then \(f = 0 \) on \(S \) except at most on a countable subset of \(S \). In other words, the set \(A = \{scS : f(s) \neq 0\} \) is at most countable. Since, if \(\{A_n = \{scS : |f(s)| \geq \frac{1}{n}\} \), \(A = \bigcup_{n \in \mathbb{N}} A_n \). Set \(\|f\|_1 = M \) and \(n \in \mathbb{N} \) is fixed. Then we have
\[
M = \sum_{s \in S} |f(s)| \geq \sum_{s \in A_n} |f(s)| \geq \sum_{s \in A_n} \frac{1}{n} = \frac{1}{n} |A_n|,
\]
where \(|A_n|\) is the cardinality of \(A_n\). So \(|A_n| \leq nM\). Hence \(A_n\) is a finite subset of \(S\) and thus \(A\) is at most countable.

Semigroup \(S_T\)

Let \(T \in \text{Mul}_1(S)\). Then we define a new binary operation "\(\circ\)" on \(S\) as follow:

\[s \circ t = s \ T(t) \ \ (s, t \in S). \]

The set \(S\) equipped with the new operation "\(\circ\)" is denoted by \(S_T\) and sometimes called "induced semigroup of \(S\)". Now we have the following results.

Theorem 2.1. Let \(S\) be a Semigroup. Then (i) if \(T \in \text{Mul}_1(S)\) then \(S_T\) is a semigroup. The converse is true if \(S\) is left cancellative and \(T\) is surjective.

(ii) If \(S_T\) is left cancellative and \(T\) is surjective, then \(T^{-1} \in \text{Mul}_1(S)\).

(iii) If \(S\) is a topological semigroup and \(S_T\) has a left approximate identity then \(T^{-1} \in \text{Mul}_1(S)\).

Proof.

i) Let \(T \in \text{Mul}_1(S)\) and take \(r, s, t \in S\). Then

\[
\begin{align*}
 r \circ (s \circ t) & = r \ T(s \circ t) = r \ T(s \ T(t)) = r \ T(s) T(t) = (r \ T(s)) T(t) \\
 & = (r \circ s) \circ t
\end{align*}
\]

So, \(S_T\) is a semigroup.

Conversely, suppose that \(S\) is left cancellative and take \(r, s, t \in S\). Since \(T\) is surjective, there exists \(u \in S\) such that \(T(u) = t\). Then

\[
\begin{align*}
 rT(st) & = rT(sT(u)) = r \circ (s \circ u) = (r \circ s) \circ u = (rT(s)) T(u) \\
 & = rT(st).
\end{align*}
\]

By the left cancellativity of \(S\), we have \(T(st) = T(s) t = (r, s \in S)\). So, \(T\) is a left multiplier.

ii) We must prove that \(T\) is injective. To do this end, take \(r, s, u \in S\) and let \(T(r) = T(s)\).

Then \(u \circ r = uT(r) = uT(s) = u \circ s\). So \(r = s\), since \(S_T\) is left cancellative. Hence \(T^{-1}\) exists.

Now, we show that \(T^{-1} \in \text{Mul}_1(S)\). Take \(r, s \in S\). Then

\[
T^{-1}(rs) = T^{-1}[TT^{-1}(r)s] = T^{-1}[T(T^{-1}(r)s)]
= (T^{-1}T)[T^{-1}(r)s] = T^{-1}(r)s.
\]

iii) It is enough to show that \(T\) is injective. Take \(r, s \in S\) and suppose that \(T(r) = T(s)\).

Then

\[
r = \lim_{\alpha} e_\alpha \circ r = \lim_{\alpha} e_\alpha T(r) = \lim_{\alpha} e_\alpha T(s) = \lim_{\alpha} e_\alpha \circ s = s.
\]
There are many properties that induced from S to semigroup S_T. But sometimes they are different.

Theorem 2.2. Let S be a Hausdorff topological semigroup and $\text{TeMul}_1(S)$. If S is commutative then so is S_T. The converse is true if $\overline{T(S)} = S$.

Proof. Suppose S is commutative and take $r, s \in S$. Then

$$r \circ s = r \, T(s) = T(s)r = T(sr) = T(rs) = T(r) \, s = s\, T(r) = s \circ r.$$

So, S_T is commutative.

Conversely, Let S_T be commutative and take $r, s \in S$. Then there exist nets (r_α) and (s_β) in S such that $\lim_\alpha T(r_\alpha) = r$ and $\lim_\beta T(s_\beta) = s$.

So, we have

$$rs = \lim_\alpha \lim_\beta T(r_\alpha \circ s_\beta) = \lim_\alpha \lim_\beta T(s_\beta \circ r_\alpha) = \lim_\alpha \lim_\beta T(s_\beta) \, T(r_\alpha) = sr.$$

Thus S is commutative.

In the sequel, we investigate some relations between two semigroup S and S_T according to the role of the left multiplier T.

Theorem 2.3. Let S be a semigroup and $\text{TeMul}_1(S)$. Then

(i) If T is surjective and S_T is an inverse semigroup then S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

(ii) If S_T is an inverse semigroup and T is injective then $T(S)$ is an inverse subsemigroup of S.

(iii) If T is bijective then S_T is an inverse semigroup if and only if S is an inverse semigroup.

Proof.

i) Suppose that S_T is an inverse semigroup and T is surjective. Define the map $\varphi: S_T \to S$ by $\varphi(s) = T(s)$. Take $r, s \in S$, then

$$\varphi(r \circ s) = T(r \circ s) = T(r)T(s) = \varphi(r)\varphi(s).$$

So, φ is an epimorphism from S_T onto S, since T is surjective. By theorem 5.1.4[7], S is an inverse semigroup and $T(s^{-1}) = T(s)^{-1}$ for all $s \in S$.

ii) Suppose that T is injective and S_T is an inverse semigroup. Evidently, $T(S)$ is a subsemigroup of S. We show that it is an inverse semigroup. Take $s \in T(S)$. There exists $t \in S$ such that $s = T(t)$. Also, there exists a unique element $u \in S$ such that $t = t_0 \, u_0 \, t$, since S_T is an inverse semigroup. Therefore, $T(t) = T(t)T(u)T(t)$, or $s = s \circ T(u) \circ s$.

Of course, $T(u)$ is unique because $u \in S$ is unique and T is injective. Hence $T(S)$ is an inverse subsemigroup of S.

iii) Suppose that \(T \) is bijective and let \(S_T \) be an inverse semigroup. Since \(T \) is injective and surjective, by (i) and (ii), \(S = T(S) \) is an inverse semigroup.

Conversely, suppose that \(S \) is an inverse semigroup. Since \(T \) is bijective, by theorem 2.1(ii), \(T^{-1} \in Mul_{i}(S) \). So \(\varphi^{-1}: S \rightarrow S_T \) defined by \(\varphi^{-1}(s) = T^{-1}(s) \) is an epimorphism. Hence by (i) \(S_T \) is an inverse semigroup.

We say that \(T \in Mul_{i}(S) \) is an inner left multiplier if it has the form \(T = L_s \) for some \(s \in S \) where \(L_s(t) = st \quad (teS) \).

If \(T \in Mul_{i}(S) \) is inner, then each ideal of \(S \) is permanent under \(T \); that is \(T(I) \subseteq I \) for all ideal \(I \) of \(S \). It is easily to see that if \(S \) has an identity, then each \(T \in Mul_{i}(S) \) is inner.

Let \(S \) be a semigroup. Then \(S \) is called semisimple if \(I^2 = I \) for all ideal \(I \) of \(S \) (see [9], page 95 for more details).

Theorem 2.4. Let \(S \) be a semigroup with an identity and \(T \in Mul_{i}(S) \). If \(S_T \) is semisimple, then \(S \) is so. The converse is true if \(S_T \) is left cancellative and \(T \) is surjective.

Proof. Since \(S \) is unital there exists \(\mu \in S \) such that \(T = L_\mu \). Suppose that \(S_T \) is semisimple and \(I \) is an ideal of \(S \). Then

\[
I \circ S = IT(S) \subseteq IS \subseteq I.
\]

Similarly, \(S \circ I \subseteq I \). It follows that \(I \) is an ideal of \(S_T \). By the hypothesis \((I_T)^2 = I \circ I = I \). Now, take \(r \in I \) then there are \(s, t \in I \) such that

\[
r = s \circ t = st(t) = s(\mu t) \in I^2.
\]

So we show that \(I^2 = I \) and hence \(S \) is semisimple.

Conversely, assume that \(S_T \) is left cancellative and \(T \in Mul_{i}(S) \) is surjective then by theorem 2.1(ii), \(T^{-1} \in Mul_{i}(S) \). So, there exists \(b \in S \) such that \(T^{-1} = L_b \). Suppose that \(S = S_{T^{-1}} \). Then we have

\[
S = S_{TT^{-1}} = (S_T)_{T^{-1}} = S_{T^{-1}}.
\]

By hypothesis and above the proof, \(S = S_{T^{-1}} \) is semisimple.

Semigroup Algebra \(\ell^1(S_T) \)

We say that a discrete semigroup \(S \) is amenable if there exists a positive linear functional on \(\ell^\infty(S) \) called a mean such that \(m(1) = 1 \) and \(m(l_s f) = m(f) \), \(m(r_s f) = m(f) \) for each \(s \in S \), where \(l_s f(t) = f(st) \) and \(r_s f(t) = f(ts) \) for all \(t \in S \). The definition of amenable group is similar to semigroup case. Refer to [12] for more details.
Let \mathfrak{A} be a Banach algebra and let X be a Banach \mathfrak{A}–bimodule. A derivation from \mathfrak{A} to X is a linear map $D: \mathfrak{A} \to X$ such that
\[D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathfrak{A}). \]
A derivation D is inner if there exists $x \in X$ such that
\[D(a) = a \cdot x - x \cdot a \quad (a \in \mathfrak{A}). \]
The Banach algebra \mathfrak{A} is amenable if every bounded derivation $D: \mathfrak{A} \to X^*$ is inner for all Banach \mathfrak{A}–bimodule X. Where X^* is the dual space of X. We say that the Banach algebra \mathfrak{A} is weakly amenable if any bounded derivation D from \mathfrak{A} to \mathfrak{A}^* is inner. For more details see [12], [16].

If S is a commutative semigroup, by theorem 5.8 of [8] $\ell^1(S)$ is called semisimple if and only if for all x, yeS, $x^2 = y^2 = xy$ implies $x = y$.

Theorem 3.1. Let S be a commutative semigroup and let $T \in \text{Mul}_1(S)$ be injective. Then $\ell^1(S)$ is semisimple if and only if $\ell^1(S_T)$ is semisimple.

Proof. Take $r, s \in S$. Then $r^2 = s^2 = rs$ if and only if $T(r^2) = T(s^2) = T(r)T(s)$ or equivalently $r \circ r = s \circ s = r \circ s$, because T is injective. So, by theorem 5.8 [8], $\ell^1(S)$ is semisimple if and only if $\ell^1(S_T)$ is semisimple.

Theorem 3.2. Let S be a discrete semigroup and $T \in \text{Mul}_1(S)$. Then
(i) The left multiplier T has an extension $\tilde{T} \in \text{Mul}_1\left(\ell^1(S)\right)$ with the norm decreasing.
(ii) The left multiplier T is injective if and only if so is \tilde{T}.
(iii) If T is injective then \tilde{T} is an isometry and also $\ell^1(S_T)$ and $\left(\ell^1(S)\right)_T$ are isomorphic.

Proof. (i) An arbitrary element $f \in \ell^1(S)$ is of the form $f: S \to \mathbb{C}$ such that $f(x) = 0$ except at the most countable subset A of S. If A is a finite subset of S then $f = \sum_{k=1}^n f(x_k) \delta_{x_k}$ for some fixed $n \in \mathbb{N}$. So in general we have
\[f = \sum_{x \in S} f(x) \delta_x = \sum_{x \in A} f(x) \delta_x = \sum_{k=1}^n f(x_k) \delta_{x_k}. \]
Now, for each $n \in \mathbb{N}$, let $f_n = \sum_{k=1}^n f(x_k) \delta_{x_k}$ and define $\tilde{T}: \ell^1(S) \to \ell^1(S)$ by
\[\tilde{T}(\delta_x) = \delta_{T(x)} \quad (x \in S), \]
\[\tilde{T}(f_n) = \sum_{k=1}^n f(x_k) \tilde{T}(\delta_{x_k}) = \tilde{f}_n. \]
For each $m, n \in \mathbb{N}$ where $n \geq m$, we have
\[\|\tilde{T}(f_n) - \tilde{T}(f_m)\|_1 = \|\tilde{f}_n - \tilde{f}_m\|_1 = \|\sum_{k=m}^n f(x_k) \tilde{T}(\delta_{x_k})\| = \|\sum_{k=m}^n f(x_k) \delta_{T(x_k)}\| \leq \sum_{k=m}^n |f(x_k)| = \|f_n - f_m\|_1. \]
So \(\{\tilde{T}(f_n)\}_n \) is a Cauchy sequence and it is convergent. Now, we define \(\tilde{T}(f) = \lim_n \tilde{T}_n \).

Then the definition is well defined. Hence

\[
\tilde{T}(f) = \sum_{k=1}^{\infty} f(x_k) \tilde{T}(\delta_{x_k}) = \tilde{f},
\]

also

\[
\|\tilde{f}\|_1 \leq \sum_{x \in A} |f(x_k)| = \|f\|_1 \quad \text{or} \quad \|\tilde{T}(f)\|_1 \leq \|f\|_1.
\]

It shows that \(\tilde{T} \) is norm decreasing.

In the following, we extend \(\tilde{T} \) by linearity. Let \(f, g \in \ell^1(S) \). Then there are two at most countable sub set \(A, B \) of \(S \) such that

\[
f = \sum_{x \in A} f(x) \delta_x, \quad g = \sum_{x \in B} g(x) \delta_x.
\]

Suppose that \(D = A \cup B \). So we have \(f + g = \sum_{x \in D} (f(x) + g(x)) \delta_x \).

Then, it follows that

\[
\tilde{T}(f + g) = \tilde{T} + \tilde{g} = \sum_{x \in D} (f(x) + g(x)) \tilde{T}(\delta_x) = \sum_{x \in A} f(x) \tilde{T}(\delta_x) + \sum_{x \in B} g(x) \tilde{T}(\delta_x) = \tilde{f} + \tilde{g}.
\]

Also, if \(\alpha \in \mathbb{C} \), we have

\[
\tilde{T}(\alpha f) = \alpha \tilde{T}(f) = \alpha \sum_{x \in A} f(x) \tilde{T}(\delta_x) = \alpha \sum_{x \in A} f(x) \tilde{T}(\delta_x) = \alpha \tilde{T}(f).
\]

Therefore, \(\tilde{T} \) is a bounded linear isometry.

Now, we prove that \(\tilde{T} \in \text{Mul}_1(\ell^1(S)) \). Take \(x, y \in S \). Then

\[
\tilde{T}(\delta_x * \delta_y) = \tilde{T}(\delta_{xy}) = \delta_{T(xy)} = \delta_{T(x) * y} = \tilde{T}(\delta_x) * \delta_y.
\]

Let \(y \in S \) be fixed and \(f, g \in \ell^1(S) \). Then

\[
\tilde{T}(f * \delta_y) = \tilde{T} \left(\sum_{x \in A} f(x) \delta_{xy} \right) = \sum_{x \in A} f(x) \tilde{T}(\delta_{xy}) = \left(\sum_{x \in A} \tilde{T}(\delta_x) * \delta_y \right) = \tilde{T}(f) * \delta_y.
\]

In the general case, we have

\[
\tilde{T}(f * g) = \tilde{T} \left(\sum_{x \in A} f(x) \sum_{y \in B} g(y) \delta_{xy} \right) = \sum_{x \in A} f(x) \sum_{y \in B} g(y) \tilde{T}(\delta_x) * \delta_y = \sum_{x \in A} f(x) \tilde{T}(\delta_x) * \sum_{y \in B} g(y) \delta_y = \tilde{T}(f) * g.
\]

This shows that \(\tilde{T} \) is a multiplier on \(\ell^1(S) \).

(ii) Let \(T \) be injective. Take \(x, y \in S \) and suppose that \(\tilde{T}(\delta_x) = \tilde{T}(\delta_y) \). Then \(\delta_{T(x)} = \tilde{T}(\delta_x) = \tilde{T}(\delta_y) = \delta_{T(y)} \).

Therefore, \(T(x) = T(y) \). Since \(T \) is injective, we have \(x = y \). It follows that \(\delta_x = \delta_y \), consequently \(\tilde{T} \) is injective.

Conversely, the same argument shows that the converse holds.

(iii) Let \(T \) be injective and \(f \in \ell^1(S) \). Then there exists at most a countable subset \(A \subseteq S \) such that
Since A and $\mathcal{T}(A)$ have the same cardinal number, $\|\mathcal{T}(f)\| = \|\sum_{x \in A} f(x) \delta_x\| = \sum_{x \in A} |f(x)| = \|f\|_1$, so \mathcal{T} is an isometry.

Now, we can define a new multiplication "\boxplus" on $\ell^1(S)$ as follow

$$f \boxplus g = f \ast \mathcal{T} g \quad (f, g \in \ell^1(S)).$$

By a similar argument in theorem 1.31 [10], $\ell^1(S)$ with the new product is a Banach algebra that is denoted it by $\ell^1(S)_{\mathcal{T}}$. We define the map $\Psi: \ell^1(S_T) \to \ell^1(S)_{\mathcal{T}}$, by

$$\Psi(\delta_x) = \delta_x \quad (x \in S).$$

Take $x, y \in S$. Then

$$\Psi(\delta_x \ast \delta_y) = \Psi(\delta_{x \ast_{T} y}) = \delta_{x_{T(y)}} = \delta_x \ast \delta_{T(y)}$$

$$= \delta_x \ast \mathcal{T}(\delta_y) = \delta_x \boxplus \delta_y$$

$$= \Psi(\delta_x) \boxplus \Psi(\delta_y).$$

So, in general case, we have

$$\Psi(f \ast g) = \Psi(f) \boxplus \Psi(g) \quad (f, g \in \ell^1(S)).$$

Thus, Ψ is an isomorphism. Therefore $\ell^1(S_T)$ and $\ell^1(S)_{\mathcal{T}}$ are isomorphic.

Theorem 3.3. Let S be a semigroup and $T \in Mul_f(S)$ be bijective. Then $\ell^1(S)$ is amenable if and only if $\ell^1(S_T)$ is amenable.

Proof. By theorem 3.2, we have $\ell^1(S_T) \cong \ell^1(S)_{\mathcal{T}}$. Suppose that $\ell^1(S_T)$ is amenable and define $\varphi: \ell^1(S_T) \to \ell^1(S)$ by $\varphi(f) = \mathcal{T}(f)$. Take $x, y \in S$. Then

$$\varphi(\delta_x \boxplus \delta_y) = \mathcal{T}(\delta_x \boxplus \delta_y) = \mathcal{T}(\delta_{x \ast_{T} y}) = \mathcal{T}(\delta_x \ast \delta_{T(y)}) = \mathcal{T}(\delta_x) \ast \mathcal{T}(\delta_{T(y)})$$

$$= \mathcal{T}(\delta_x) \ast \mathcal{T}(\delta_y) = \varphi(\delta_x) \ast \varphi(\delta_y).$$

Now, by induction and continuity of \mathcal{T}, we have

$$\varphi(f \boxplus g) = \varphi(f) \ast \varphi(g).$$

If T is bijective, \mathcal{T} is bijective. Therefore φ is an epimorphism of $\ell^1(S_T)$ onto $\ell^1(S)$.

Hence, by proposition 2.3.1 [16], $\ell^1(S)$ is amenable.

Conversely, suppose that $\ell^1(S)$ is amenable. Since T is bijective, \mathcal{T} is bijective. Therefore \mathcal{T}^{-1} exists. Now define $\theta: \ell^1(S) \to \ell^1(S_T) [\cong \ell^1(S)_{\mathcal{T}}]$ by $\theta(f) = \mathcal{T}^{-1}(f)$.

Take $x, y \in S$. Then

$$\theta(\delta_x \ast \delta_y) = \mathcal{T}^{-1}(\delta_x) \ast \mathcal{T}^{-1}(\delta_y) = \mathcal{T}^{-1}(\delta_x) \boxplus \mathcal{T}^{-1}(\delta_y)$$

$$= \theta(\delta_x) \boxplus \theta(\delta_y).$$
Similarly \(\theta \) is an epimorphism from \(\ell^1(S) \) onto \(\ell^1(S_T) \). By proposition 2.3.1 [16], \(\ell^1(S_T) \) is amenable.

Note that, in general, it is not known when \(\ell^1(S) \) is weakly amenable. For more details see [2].

Theorem 3.4. Let \(S \) be a semigroup and \(T \in \text{Mul}_l(S) \) be bijective. Then, if \(S \) is completely regular then \(\ell^1(S_T) \) is weakly amenable.

Proof. It is enough to prove that \(S_T \) is completely regular, then by theorem 3.6 [2], \(\ell^1(S_T) \) can be weakly amenable. Take \(seS \). Then there exists \(reS \) such that \(T(s) = T(s)T(r) = T(s)T(r) \), since \(T \) is bijective and \(S = T(S) \) is completely regular. So we have \(T(s) = T(s \circ r \circ s) \) and \(T(r \circ s) = T(s \circ r) \). Hence \(s = s \circ r \circ s \) and \(r \circ s = s \circ r \) for some \(reS \), since \(T \) is injective. Therefore \(S_T \) is completely regular.

Corollary 3.5. Suppose that \(S \) is a commutative completely regular semigroup and \(T \in \text{Mul}_l(S) \) is injective. Then \(\ell^1(T(S)_T) \) is weakly amenable.

Proof. [2, theorem 3.6] \(\ell^1(S) \) is weakly amenable. Define \(\varphi : S \to \ell^1(S_T) \) by \(\varphi(s) = T^{-1}(s) \) \((seS) \).

We show that \(\varphi \) is a homomorphism. Take \(seS \), then we have \(\varphi(rs) = T^{-1}(rs) = T^{-1}(r)s = T^{-1}(r) \circ (T^{-1}s) \).

So \(\varphi \) is a homomorphism. Then by proposition 2.1[7], \(\ell^1(T(S)_T) \) is weakly amenable. In the case that \(S \) is a group, it is easy to see that the amenability of \(S \) implies the amenability of \(\ell^1(S_T) \). Indeed, when \(S \) is a group, by theorem 2.1, \(S_T \) is a semigroup and one can easily prove that \(S_T \) is also a group. On the other hand, \(\text{Mul}_l(S) \cong S \) because \(S \) is a unital semigroup, so each \(Te\text{Mul}_l(S) \) is inner and of the form \(T = L_s \) for some \(seS \). Also \(T^{-1} = L_{a^{-1}} \) exists, since \(S \) is a group. Then the map \(\theta : S_T \to S \) defined by \(\theta(s) = T(s) \) is an isomorphism; that is \(S \cong S_T \). Thus we have the following result:

Corollary 3.6. Let \(S \) be a cancellative regular discrete semigroup. Then \(\ell^1(S) \) is amenable if and only if \(\ell^1(S_T) \) is amenable.

Proof. By [9, Exercise 2.6.11] \(S \) is a group. So the assertion holds by [15, theorem 2.1.8]
Examples

In this section we present some examples which either comments on our results or indicate necessary condition in our theorems.

4.1. There are semigroups S and $T \in \text{Mul}(S)$ such that the background semigroups S are not commutative but their induced semigroups S_T are commutative.

This example shows that the condition $\overline{T(S)} = S$, in theorem 2.2, can not be omitted.

Let S be the set $\{a, b, c, d, e\}$ with operation table given by:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Clearly (S, \cdot) is a non-commutative semigroup. Now, put $T = L_a$ where $L_a(x) = ax$ for all $x \in S$. One can get easily the operation table of S_T as follow:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

The operation table shows that the induced semigroup S_T is commutative and $T(S) \neq S$. Also the other induced semigroup S_T is commutative for $T = L_d$ analogously.

Now we present some important theorems from[14] that we need in the following examples:

Theorem 4.2. Let S be a semigroup. Suppose that $t^1(S)$ is amenable. Then

(i) S is amenable
(ii) S is regular.
(iii) $E(S)$ is finite.
(iv) $t^1(S)$ has an identity.

Proof. (i) That is lemma 3 in [5].
(ii) and (iii) See theorem 2 in[6].
(iv) That is corollary 10.6 in[4].

Theorem 4.3. Let S be a finite semigroup. Then the following statements are equivalent:

1. $\ell^1(S)$ is amenable.
2. S is regular and $\ell^1(S)$ is nuiital.
3. S is regular and $\ell^1(S)$ is semisimple.

Proof. Refer to [3].

4.4. There are semigroups S and $T \in \text{Mul}(S)$ such that S and $\ell^1(S)$ are amenable but S_T is not regular and also, $\ell^1(S_T)$ is not amenable.

This example shows that two semigroup algebras $\ell^1(S)$ and $\ell^1(S_T)$ can be different in some properties. Also, it notifies that the bijectivity of T in the theorem 3.3 is essential. Put $S = \{x_0, x_1, x_2, ..., x_n\}$ with the operation $x_ix_j = x_{\text{Max}(i,j)}$ ($0 \leq i, j \leq n$, $n \geq 2$).

Then S is a semigroup. Since

$$\text{Max}\{i, \text{Max}(j, k)\} = \text{Max}\{\text{Max}(i, j), k\} = \text{Max}(i, j, k).$$

We denote it by S_v. This semigroup is commutative. So by (0.18) in [12], it is amenable. S_v is a unital semigroup and has a zero; indeed, $e_s = x_0$ and $a_s = x_n$. Also, it is a regular semigroup and $\text{Mul}(S_v) \cong S_v$ because S_v has an identity.

Evidently, S_v is regular since each $s \in S_v$ is idempotent. The semigroup algebra $\ell^1(S_v)$ is a unital algebra because S_v has an identity. So by theorem 4.3 (ii) $\ell^1(S_v)$ is amenable.

Now, take $T = L_{x_k}$ for a fixed $x_k \in S$ where $k \geq 1$. By theorem 2.2, $(S_v)_T$ is commutative so is amenable. We show that T is neither injective and nor surjective.

Take $x_i \in S_v$, then $Tx_i = x_kx_i = x_{\text{Max}(k,i)}$. So

$$T(S_v) = \{x_k, x_{k+1}, ..., x_n\} \neq S_v.$$

Hence, T is not surjective.

Again, take distinct elements x_i, x_j in S_v for some $i, j < k$ such that $T(x_i) = T(x_j)$. Then we have $x_{\text{Max}(k,i)} = x_{\text{Max}(k,j)}$ but $x_i \neq x_j$. So T is not injective.

We prove that $(S_v)_T$ is not regular. If $(S_v)_T$ is regular, then for $x_{k-1} \in S_v$ there exists an element $x_j \in S_v$ such that

$$x_{k-1} = x_{k-1} o x_j o x_{k-1} = x_{\text{Max}(k,j)}. $$
That implies that $\max\{k, j\} = k - 1$; which is impossible. Consequently, by theorem 4.2 (ii) or 4.3 (ii), $\ell^1((S_v)_T)$ is not amenable.

Also, the inequality $S_v \circ S_v = \{x_k, x_{k+1}, \ldots, x_n\} \neq S_v$ shows that $\ell^1((S_v)_T)$ is not weakly amenable. In the next example we show that in the theorem 3.2 (iii) the condition "injectivity of " can not be omitted.

4.5 There are a semigroup S and $T \in \text{Mul}_1(S)$ such that $T \in \text{Mul}_1(S)$ is not injective and the corresponding $\tilde{T} \in \text{Mul}_1(\ell^1(S_T))$ is not an isometry.

Suppose that S_v is a semigroup as in example 4.4 and $T = L_{x_k}$ for some fixed $1 < k < n$. If $f \in \ell^1(S_v)$ then $f = \sum_{i=0}^{n} f(x_i)\delta_{x_i}$ and also $\tilde{T}(f) = \sum_{i=0}^{n} f(x_i)\delta_{T(x_i)}$. But $T(x_i) = \begin{cases} x_i & k < i \leq n \\ x_k & 0 \leq i \leq k \end{cases}$, so

$$\tilde{T}(f) = \left(\sum_{i=k}^{k} f(x_i)\right)\delta_{x_k} + \sum_{i=k+1}^{n} f(x_i)\delta_{T(x_i)}.$$

Hence

$$\|\tilde{T}(f)\| = \left|\sum_{i=0}^{k} f(x_i)\right| + \sum_{i=k+1}^{n} |f(x_i)|
\leq \sum_{i=0}^{k} |f(x_i)| + \sum_{i=k+1}^{n} |f(x_i)| = \|f\|_1.$$

It shows that \tilde{T} is not an isometry.

4.6. There are semigroups S and $T \in \text{Mul}_1(S)$ such that $\ell^1(S)$ is semisimple. But $\ell^1(S_T)$ is not semisimple. This example remind that, in theorem 3.1 the multiplier T must be injective.

Let S be a set $\{x_0, x_1, \ldots, x_n\}$ where $n \in \mathbb{N}$ and $n \geq 3$ is fixed. by operation given by $xy = x_{\min\{i,j\}}$, S is a commutative semigroup. Since

$$\min\{i, \min\{j, k\}\} = \min\{\min\{i, j\}, k\} = \min\{i, j, k\} \quad (i, j, k \in \mathbb{N}).$$

We denote it briefly by S_\wedge. For each $x, y \in S$ the equality $x^2 = y^2 = xy$ implies $x = y$. So by Theorem 5.8 $\ell^1(S_\wedge)$ is semisimple.

Now, let $T = L_{x_k}$ for a fixed $1 \leq k < n - 1$. It is easy to see that $T(x_k) = T(x_n)$ but $x_k \neq x_n$. So the multiplier T is not injective.

We show that neither S_\wedge nor $\ell^1(S_\wedge)_T$ is semisimple.

Each ideal of S is of the form

$I_m = \{x_0, x_1, \ldots, x_m\} \quad (m \leq n).$

We claim that S_T is not semisimple. Since for each $m \in \mathbb{N}$ we have
On the other hand, for each $x_i, x_j \in S$ where $i \neq j$ and $i, j > k$, we have $x_i \triangleright x_i = x_j \triangleright x_j = x_i \triangleright x_j = x_k$, while $x_i \neq x_j$. Thus, Theorem 5.8 [8] shows that $\ell^1(S_k, T)$ is not semisimple.

Acknowledgment

The authors express their thanks to Professor A. R. Medghalchi for his valuable comments. Also we thank him for some corrections of this paper.

Reference

