بررسی مدل ترای‌های d-d یی اربی تصادفی

رئیسی کاظمی، حضیتی عبدالهی نهوجی، دانشگاه بین‌المللی امام خمینی (ره)، گروه آمار

سولماز نوروزی، دانشگاه گرایانت‌فناپر، گروه آمار

دریافت 95/10/21

چکیده

ترای‌های آزمون تنبیه‌دادنی درون رشته‌ها هستند. با استفاده از رشته‌ها روی الگویی که منجر به تولید درخت‌های

d-d یبت می‌شوند، می‌توان ترای‌های d-d یبت ساخت. در سررس مقاله فرض می‌کنیم که رشته‌های دیره‌های شده در ترای

d-d به کمک متساوی حافظه مناسب تولید می‌شوند. در این مقاله، تحلیل سیوگذاری شده با بهره‌گیری ترکیبی خاصی به ترای

d-d یبت توسیع داده می‌شود. از این رهگیری ترکیبی برای بررسی اتصال نهایی استفاده می‌کنیم زیرا نتایج احتمال آن

نامعلوم است. نتایج احتمال مقیاس عمق و نتایج توسیع ارتفاع را هرگونه که p برگ است، به‌دلتی می‌آوریم. این نتایج از بررسی

بناهایی به‌ارگنتین شناخته که آنها را با روش تحلیلی جو می‌کنیم. به‌دلتی می‌آوریم.

واژه‌های کلیدی: ترای‌های d-d یبت، نمایه، ارتفاع، مقیاس

مقدمه

درخت‌های رقیمی، ساختارهای داده‌ای بین‌ای تری رشته‌ها هستند [12]. در میان آن‌ها ترای و درخت جستجوی

رقیمی به‌سبب کاربردهای وسیع‌اند. افراد سایر اهداف برای شاخه‌های محسوب می‌شوند. این ساختارهای درختی را اولین بار

بربانداپس در اواخر دهه 50 میلادی برای پردازنده‌های اطلاعاتی معرفی کرد [1]. در سال 1960، فردریش نام‌آمر کرای برای

این نوع از درخت‌های رقیمی پیشنهاد کرد [7]. ترای‌ها درخت‌های چندشاخه‌ای هستند که گردهایی شام غرافیک

بردارهای (شکل حروف در یک نوشته رسم شده به کمک خیمه و خطوط) از نوشتارها را رقم‌هایی. بعدها ساده‌گری و

کارایی، ترای‌ها به‌سرعت در کاربردهای گوناگون استفاده شدند. امروز آنها از رده‌های استاندارد یا به‌دست‌آمده به آدرس‌های

IP از فشرده‌سازی داده‌ها تا خرید کردن حافظه با دست‌بای تصادفی و با محترایی که مربوط به‌هگم‌ها، از

الگوریتم‌های انتخاب اولیه اطلاعات تا جدول‌های خرید کننده خاص شده به کار می‌گردد. می‌شود. نتایج آنها موفقی در

سیرای از کاربردهای علمی رایانه‌ای استفاده می‌شود. برای مثال ترای‌ها به‌طرور گسترش‌دهنده در الگوریتیما به‌پایه تصادفی

خودکار کلیمات در میان [12] و در الگوریت‌ها برای کردن و رفع اشکال برنامه‌ها به کمک تولید استفاده می‌شوند.

همچنین ترای‌ها در جستجو، مربی‌کردن، کدگذاری، نظر فرشیدسازی لیبل‌زایی و زیست‌شناسی مولکولی کاربرد

دارند [12]. [15]. در حقیقت ترای‌ها انتخابی طبیعی از ساختارهای داده‌ای هستند که ورودی‌های آنها شامل عباراتی

الگویی با رقیمی است. آنها اغلب برای ذخیره کردن چنین داده‌هایی مانند پذیرایی کارا استفاده می‌شوند.

r.kazemi@sci.ikiu.ac.ir

نویسنده مسئول
فرض کنید n رشته ساخته شده روی الگوی متناهی $\{a_1, \ldots, a_d\}$ فضای است، که در آن $2 \leq d \leq n$. یک رشته از رشته‌های بالا بطور زیر ساخته می‌شود. اگر $n = 0$, اگر $n = 1$, آنگاه یک گره (داخلی) یکتا برای در d گرفتن این رشته است. اگر $2 \leq n$, آنگاه یک گره داخلی به عنوان ریشه در حالت d می‌شود و سایر رشته‌ها براساس اولین رقمشان به یکی از d زیردرخت متصل به این گره برای ذیل رشد می‌شوند.

برای هدایت m گره، این الگوریتم برای ذیل رشد شدن رشته‌ها در زیردرخت‌ها به طور بازگشتی به گرگ فرخه می‌شود. به این صورت که m این رقم هر رشته برای شاخه گیاهی در سطح ℓ اهمیت دارد. در نهایت هر رشته در یک برج ذیل رشد می‌شود [2]. برای مثال فرض کنید $d = 2$ و رشته‌های زیر مفروض باشد:

\[
X_1 = 0011111\ldots, \quad X_2 = 1111111\ldots, \quad X_3 = 1111111\ldots, \quad X_4 = 0000000\ldots, \quad X_5 = 0101010\ldots, \quad X_6 = 1111111\ldots,
\]

این الگوریتم بایان می‌کند که رشته‌های X_2, X_5, X_1 به زیردرخت سمت چپ و X_3, X_4, X_1 به زیردرخت سمت راست X_1 برای ذیل رشد شدن هدایت می‌شوند زیرا اولین رقم رشته‌های X_1, X_2, X_3, X_4, X_5 به سمت چپ و رشته X_1 به سمت راست هدایت می‌شود. زیردرخت شامل X_1 خود به مقال و در زیردرخت های درون رشته X_1, X_2, X_3, X_4, X_5 به سمت راست هدایت می‌شود. در مقال، این رشته با X_1 تلفیق می‌شود. چون X_1 نیز هر رشته برای ذیل رشد شدن در زیردرخت سمت چپ و رشته X_1 را نیز تنها رشته برای ذیل رشد شدن در زیردرخت سمت راست است، از این رو، این زیردرخت تنها شامل دو گره خارجی (برگ) برای ذیل رشد شدن این دو رشته است. به همین سبب رشد به زیر درخت ذیل رشد می‌شود. ترتیب حاصل در شکل 1 رسم شده است که در آن دایره‌ها بین گره‌های داخلی و مربع‌ها بین گره‌های خارجی قرار دارند [2]. مهم‌ترین متغیر تصادفی در بررسی درخت‌های تصادفی و هم‌زیست تری، نمایی است زیر متغیرهای دیگری چون ارتفاع، عمق یک گره و کوئن‌تایی مسیر را می‌توان بر حسب آن نوشت [9]. این متغیر شامل دو نوع افقی و عمودی است. نمایی افقی، نابعی از تعداد رشته‌های ذیل رشد و فاصله از ریشه است.

چون گره‌هایی که رشد راه در آن شده‌اند می‌شوند (گره‌های خارجی) از اهمیت بیشتری در مقایسه با گره‌های داخلی برخوردارند. از این رو، در مقاله نمایی افقی خارجی بحث می‌شود. نتایج به سادگی و با استفاده از تغییرات به نمایی افقی خارجی در سطح k با $B_{n,k}$ برای نمایی افقی خارجی k به تعداد m در فاصله k هگمگی که رشد در تری ذیل رشد می‌شود. استفاده می‌کنیم. ممکن می‌باشد که برای تعداد فاصله k فاصله k برای تعداد k هگمگی که رشد در تری ذیل رشد می‌شود. استفاده می‌کنیم. ممکن می‌باشد که برای تعداد فاصله k فاصله k برای تعداد k هگمگی که رشد در تری ذیل رشد می‌شود. استفاده می‌کنیم. ممکن می‌باشد که برای تعداد m در فاصله k.
چپ را با 1، حاصل جمع سمت چپ را با $p_i(t)$ و حاصل جمع سمت راست را با $p_i(t)$ نشان می‌دهم. تحلیل در این مقاله $p_i(t)$ نشان می‌دهد که نابرابری را برقرار می‌کند. این پارامتر تفاوت اصلی رهیافت ترکیبیاتی استفاده شده در این مقاله با سایر رهیافت‌های ترکیبیاتی است.

فرض کنید $1 \leq s \leq d$ برای مثال $s = 1, 2$ و α به‌طوری که α هر یک از گام‌های ترتیبی p_1, p_2, \ldots, p_s و p_1, p_2, \ldots, p_s نشان دهیم. تحلیل در این مقاله برای هر p, که نابرابری را برقرار می‌کند، اعتبار دارد. این موضوع تفاوت اصلی رهیافت ترکیبیاتی استفاده شده در این مقاله با سایر رهیافت‌های ترکیبیاتی است.

شکل 1. ترازی ساخته شده از 5 رشته X_1, \ldots, X_5.

فرض کنید $p_{d_1} + p_{d_1} + \ldots + p_s + p_{s+1} + p_{s+1} + \ldots + p_{s+d} < p_{s+1} + p_{s+1} + \ldots + p_{s+d} < p_{s+1} + p_{s+1} + \ldots + p_{s+d}$.

شکل 2. گام‌های ترتیبی یک تحلیل ترکیبیاتی استاندارد.

شکل 3. بازیافت گشتاورها

چون محاسبه توزیع احتمال متفاوت‌های تصادفی تعیین شده روی الگوریتم‌ها یا درخت‌های تصادفی اغلب غیرممکن است، تحلیل ترکیبیاتی می‌تواند با اجرای چند گام ترتیبی بدون ارجاع به توزیع احتمال متغیر تصادفی منجر به پیدا کردن میانگین‌ها و بهبود این متغیرها تصادفی شود. در پردازش موارد از جمله بحث حاضر می‌توان یک تحلیل مفاهیمی امکان‌پذیر است. به‌طور کلی یک تحلیل ترکیبیاتی استاندارد شامل مراحل زیر است: 2 این چهار مدل محاسبه و استفاده از متامه‌ای دیگر با تبدیل انتگرال به یک پارامتر بتای (در اینجا تعداد رشته‌ها) و استفاده از نتایج تحلیل منحنی پارامتر تبدیل پواسن در این روش که در اینجا گسترش‌ها یک نمایه اول نمایه افقی خارجی هستند باشد گام‌های ترتیبی نمایش داده شده در شکل 3 انجام شود.

در بخش 2 اینجا نشان داده می‌شود که تابع مولد احتمال نمایه افقی انتگرال در رابطه‌ای بازگشتی صدق می‌کند.

شکل 4. گام‌های ترتیبی یک تحلیل ترکیبیاتی استاندارد.

شکل 5. نتایج معمولی افت و کاهش در آوردن از پواسن سایزی در آوردن.

روش آزمایش‌های این مقاله با توجه به تعريف نمایه باسته، در اینجا یک تامین برچسب‌دار است با تعريف یک تابع مولد نمایی مناسب و استفاده از آن، رابطه‌ای بازگشتی برای تبدیل پواسن متناهی به دست می‌آید. در بخش 3
پژوهش‌های ریاضی
نشریه علوم دانشگاه خوارزمی

تبدیل ملین که بر اساس تبدیل پواسن تعیین می‌شود بررسی شده و ثابت می‌شود که در رابطه‌ای با تبدیل پواسن صدق می‌کند. در بخش 4 دانش‌های مختلفی برای تحلیل ترکیبیاتی از طریق تحلیل نفکه زنی یک تابع خاص در نظر گرفته می‌شود. در ادامه نتایج اصلی را در قسمت 1 بیان و ثابت می‌کنیم. این تابع با پواسن از پواسن سازی حاصل می‌شود.

با توجه به تبادل افزایش افکت خارجی

\[
B_{nk} = \begin{cases}
0, & n = 0, k \geq 0 \\
1, & n = 1, k = 0 \\
0, & n = 1, k \geq 1 \\
0, & n \geq 1, k = 0
\end{cases}
\]

تابع مولد احتمال نمایه‌افقی خارجی یعنی \(\phi_{nk}(u) = E(u^{B_{nk}}) \) در رابطه با تبدیل پواسن

\[
j_{nk}(u) = \sum_{k=0}^{n} \binom{n}{k, \ldots, k, \ldots} p_{1}^{k_{1}} \ldots p_{d-1}^{k_{d-1}} p_{d}^{n-k_{1} \ldots-k_{d-1}}
\]

\[
\times j_{k_{1}, \ldots, k_{d-1}, 1, \ldots, k_{d-1}}(u) j_{1, \ldots, 1, 1, \ldots, 1}(u)
\]

\[
\phi_{nk}(u) = \begin{cases}
1, & n = 0, k \geq 0 \\
u, & n = 1, k = 0 \\
1, & n = 1, k \geq 1 \\
1, & n \geq 1, k = 0
\end{cases}
\]

برای اثبات رابطه (1) کافی است به این نکته توجه کنیم که یک تابع ساختار برابر با تابع پواسن است. در واقع هر کدام از زیردرخت‌های ریشه یک تابع با ارتفاع یکی کمتر از تابع اصلی هستند و بهدلیل ضریب استقلال در مشا هم‌اکنون تعداد رشته‌های کمتر از تابع اصلی در ارتفاع تابع نتیجه‌گیری بیشتری با پارامترهای اصلی است. چون در این صورت، این توابع بیشتر در اصلی تابع مولد نمایه (2) را به آن دنباله‌شماری تابع

\[
E_{k}(x, u) = \sum_{n=0}^{\infty} \phi_{nk}(u) \frac{x^{n}}{n!}
\]

\[
E_{k}(x, u) = \int_{0}^{1} E_{k-1}(p, x, u) + (\phi_{nk}(u) - \phi_{nk-1}(u)) x, \quad k \geq 1.
\]

\[
E(x, u) = e^{x} + x(u - 1)
\]

\[
E_{k}(x, u) = \prod_{i=1}^{d} \left(e^{p_{i}x} + p_{i}x(u - 1) \right) + (1 - u)x
\]
بررسی مدل‌های ترای‌های \(d-d \) یی‌اریب‌تصادفی

\[
e^x + \sum_{i,j}^d e^{p_{ij}} p_{ij}(u-1) + \sum_{i,j}^d p_{ij} x^2 (u-1)^2 + (1-u)x.
\]

در نتیجه

\[
E_k(x,u) = \prod_{i=1}^d E_{k-1}(p_{ij},x) \quad k \geq 2.
\]

با مشتق گرفتن از معادله (3) نسبت به \(u \) و سپس قراردادن \(u = 1 \) داریم:

\[
E_k(x) = E_{k-1}(p_{ij},x) \exp \left\{ p_{ij} x + p_{ij} x + \ldots + p_{ij} x \right\}
\]
\[+ E_{k-1}(p_{ij},x) \exp \left\{ p_{ij} x + p_{ij} x + \ldots + p_{ij} x \right\}
\]
\[+ \ldots + E_{k-1}(p_{ij},x) \exp \left\{ p_{ij} x + \ldots + p_{ij} x + p_{ij} x \right\}
\]
\[+ E_{k-1}(p_{ij},x) \exp \left\{ p_{ij} x + p_{ij} x + \ldots + p_{ij} x \right\}
\]

\[
\left(\prod_{i,j=1}^d \right) \left\{ E_{k-1}(p_{ij},x) \right\} = \prod_{i,j=1}^d E_{k-1}(p_{ij},x)
\]

یک در آن

\[
E_k(x) = \sum_{n=0}^\infty E(B_{n,k}) \frac{x^n}{n!} , \quad k \geq 2.
\]

پواسن‌سازی فنی است که مسئله را به‌سمت یک فرآیند پواسن‌های مکانیک. تبدیل یک پواسن، دنباله توصیف کننده مدل پواسن‌های مکانیک. متمرکز می‌گردد. هر زمان مدل پواسن‌های مکانیک. در اینجا، به‌سویه برای یک راک تواناگر به‌صورت اولین مشاهده، پواسن‌های مکانیک. در اینجا، به‌سویه برای یک راک تواناگر به‌صورت اولین مشاهده، پواسن‌های مکانیک. با شرایط آغازین

\[
P^{(0)}(x) = xe^{-x}
\]

با مشتق گرفتن

\[
P^{(1)}(x) = e^{-x} \left(\frac{\partial E_k(x,u)}{\partial u} \right)_{u=1}
\]
\[= \sum_{i,j}^d e^{-(1-p_{ij})x} p_{ij} x - xe^{-x}.
\]

تبدیل ملین

فرض کنید \(P^{(k)}(x) \) تبدیل ملین \(P^{(k)}(s) \) باشد، باید

\[
P^{(k)}(s) = \int_0^\infty x^{k-1} P^{(k)}(x)dx, \quad s \in C,
\]

در اینجا، اولین مشاهده، پواسن‌های مکانیک، پواسن‌های مکانیک، پواسن‌های مکانیک، پواسن‌های مکانیک

\[
P^{(k)}(s) = \frac{\Gamma(s+1)T_d(s)^{k-1}}{\Gamma(s+1)T_d(s)^{k-1}} \left(\sum_{i,j}^d p_{ij} (1-p_{ij})^{-1} - 1 \right),
\]

که می‌گردد.
برهان

با توجه به تعریف تبدیل ملین، معادله (5) به معادله (6) برگردانده می‌شود:

\[P^{(k-1)}(s) = (p_1^{-1} + \ldots + p_d^{-1}) P^{(k-1)}(s), \quad k \geq 2 \]

از طرفی بنابراین با تکرار معادله (6)

\[P^{(k-1)}(s) = \Gamma(s+1)[T_d(s) - 1], \quad k \geq 2 \]

و برهان کامل می‌شود.

نتایج اصلی

برای عدد حقیقی \(\alpha \) با شرط

\[(-\log p_1(t))^{-1} < \alpha < (-\log p_2(t))^{-1} \]

قرار می‌دهیم:

\[\rho = \rho(\alpha) = \frac{1}{\log \frac{p_1(t)}{p_2(t)}} \log \left(\frac{1 - \alpha \log \frac{1}{p_1(t)}}{\alpha \log \frac{1}{p_2(t)} - 1} \right) \]

به‌طور هم‌ارز

\[\alpha = \frac{T_d(\rho)}{p_1(t)^{-\rho} \log \frac{1}{p_1(t)} + p_2(t)^{-\rho} \log \frac{1}{p_2(t)}} \]

به علاوه فرض می‌کنیم:

\[\beta(\rho) = \frac{p_1(t)^{-\rho} p_2(t)^{-\rho} \log \left(\frac{p_1(t)}{p_2(t)} \right)^2}{T_d(\rho)^2} \]

برای چگونگی تاماژ بین دانه‌های مختلف در بررسی تغییرات محاسبه‌ای در قسمت‌های بعدی، خواندن‌گان به بررسی دقیق مقاله کاظمی و وجیدی اصل [16] ارجاع داده می‌شوند. به‌طور هم‌ارز در این بررسی نیاز مجبور به تاماژ بین چند دانه روی جزء تغییرات \(\alpha \) هستم. تحلیل را با دانستن

\[(-\log p_1(s))^{-1} < \alpha < k / \log n \]

\[\frac{T_d(-2)}{-p_1(t)^2 \log p_1(t) - p_2(t)^2 \log p_2(t)} \]

شرایط می‌کنیم. در این حالت، به‌طور هم‌ارز

\[\rho_{n,k} = \rho(k / \log n) < \infty \]

پایه‌زدنی. از این رو، تاکنون لیم 1 و تبدیل میلی می‌تواند [15 داریم:
بررسی مدل‌ترای‌های d-d ایرب‌تصادفی

\[P^{(k)}(x) = \frac{1}{2\pi i} \int_{\rho = \infty}^{\rho = -\infty} \frac{(\sum_{s=1}^{d} p_j (1 - p_j)^{-1} - 1)}{T_d(s)} T_d(s) x^s ds, \quad (7) \]

که در آن \[\rho = \rho_{n,k} \] یا رابطه (8) را برقرار می‌سازد:

\[k = \frac{\log n}{p_1(t)^{-\rho} \log \frac{1}{p_1(t)} + p_2(t)^{-\rho} \log \frac{1}{p_2(t)}} \quad (8) \]

و بعضاً نقطه زمینی نابرابری \(T_d(s)^{k^{-1}} = e^{k \log T_d(s) - \log n} \)

چون \(\rho = \rho_{n,k} = \rho(k \log n) \)

انتخاب شود. به طور مشابه \(T_d(s)^{k} z^{-s} = e^{k \log T_d(s) - \log n} \)

در نتیجه رفتار \(s = s \) و \(T_d(s)^{k} z^{-s} \)

با محاسبات ساده اما طولانی (تکرار رابطه (5)) این معادله به دست می‌آید:

\[P^{(k)}(x) = \sum_{\ell_1, \ldots, \ell_d=1}^{k-1} \left(\prod_{i=1}^{d} p_i^{\ell_i} \cdots p_d^{\ell_d-1} p_d^{k-1} \sum_{m=1}^{d} x \right) \]

که در آن \[\theta = |r| \pi \] و \(r \geq 0 \) در این صورت

\[|e^{i \theta} P^{(k)}(x)| \leq e^{r \log \theta} |e^{i \theta} P^{(k)}(r)| \]

برهان جون

\[e^{i \theta} P^{(k)}(x) \leq e^{i \theta} P^{(k)}(r) \]

برای شدید در محاسبات قرار می‌دهیم:

\[C(k, \ell) = \left(\ell_1, \ldots, \ell_d-1 \right) \]

با استفاده از تابع‌های 1 و 2 داریم:

\[|e^{i \theta} P^{(k)}(x)| \leq \sum_{\ell_1, \ldots, \ell_d-1} C(k, \ell) \left| \exp \left(\theta \left(1 - p_1^{\ell_1} \cdots p_d^{\ell_d-1} p_d^{k-1} \sum_{m=1}^{d} x \right) \right) \right| \]

\[\times \exp \left(p_1^{\ell_1} \cdots p_d^{\ell_d-1} \sum_{m=1}^{d} x \right) \]

\[\times P^{(k)} \left(p_1^{\ell_1} \cdots p_d^{\ell_d-1} p_d^{k-1} \sum_{m=1}^{d} x r \right) \]

\[= \sum_{\ell_1, \ldots, \ell_d-1} C(k, \ell) \left| \exp \left(r \cos \theta \left(1 - p_1^{\ell_1} \cdots p_d^{\ell_d-1} p_d^{k-1} \sum_{m=1}^{d} x \right) \right) \right| \]

\[\times \exp \left(p_1^{\ell_1} \cdots p_d^{\ell_d-1} p_d^{k-1} \sum_{m=1}^{d} x \right) \]

\[1 - \cos \theta \geq 2 \theta^2 / \pi^2 \]
\[\sum_{k=1}^{d} \prod_{i=1}^{d} \left(\frac{p\left(1,\ldots,1\right)}{p\left(1,\ldots,1\right)} - \frac{p\left(1,\ldots,1\right)}{p\left(1,\ldots,1\right)} \right) \]

\[= \sum_{k=1}^{d} \left(1 - 2\theta^2 / \pi^2 \right) \right) \left(1 - p\left(1,\ldots,1\right) \right) \]

\[\times \exp \left\{ rp\left(1,\ldots,1\right) - \frac{p\left(1,\ldots,1\right)}{p\left(1,\ldots,1\right)} \right\} \]

\[\times \sum_{k=1}^{d} \left(\frac{e^{n\theta}}{2\pi} \int_{|dz|} \right) \]
بررسی مدل‌های د.د. پی ارب تصادفی

\[\log \xi = o((\log n)^{1/2}) \]

\[\frac{T_d(-2)}{-p_i(t)^2 \log p_i(t) - p_j(t)^2 \log p_j(t)} \]

\[\text{E}(B_{n, \xi}) = n^2 \left(1 - \sum_{i,j} p_i(1 - p_j) T_d(-2) \Phi(\xi) \left(1 + O \left(\frac{1 + |\xi|}{\sqrt{\log n}} \right) \right) \right). \]

\[k \text{ در آن } (x) \text{ تابع توزیع نرمال استاندارد است.} \]

برهان (1) فرض کنید \(0 < \theta < \pi / 2 \). در این صورت

\[\frac{n!n^n}{2\pi} \left| \int_{|\theta| < \pi/2} e^{in\theta} P(k)(n\theta) e^{-in\theta} d\theta \right| \]

\[\leq P(k)(n) \frac{n!n^n e^n}{2\pi} \left| \int_{|\theta| < \pi/2} e^{-in\theta} d\theta \right| \]

\[= O \left(P(k)(n)e^{-cn} \right). \]

قرار دهید

\[f(s) = \frac{\left(\sum_{i,j} p_i(1 - p_j)^{s-1} - 1 \right)}{T_d(s)}. \]

بنابر نتایج (2):

\[\frac{n!n^n}{2\pi} \left| \int_{|\theta| < \pi/2} e^{in\theta} P(k)(n\theta) e^{-in\theta} d\theta \right| \]

\[= n^{-p} T_d(n) \sum_{|\theta| < \pi/2} \Gamma(\rho + it_j) f(\rho + it_j) \]

\[\times \frac{n!n^n}{2\pi} \left| \int_{|\theta| < \pi/2} e^{in\theta} e^{-in\theta} d\theta \right| \]

\[= n^{-p} T_d(n) \sum_{|\theta| < \pi/2} \left(1 + O(k^{-1/2}) \right) \]

\[\times \frac{n!n^n}{2\pi} \left| \int_{|\theta| < \pi/2} e^{-|\theta|^2} d\theta \right| \]

\[= n^{-p} T_d(n) \sum_{|\theta| < \pi/2} \left(1 + O(k^{-1/2}) \right) \]

\[= P(k)(n) \left(1 + O(k^{-1/2}) \right). \]

\[\frac{k}{\log n} \geq \alpha_2 + \epsilon \]

می‌توان روش مشابهی را به کار گرفت. ابتدا مسیر انتگرال‌گیری را به انتقال می‌دهیم. چون تابع تحت انتگرال دارای یک تکینی و قطعی در \(s = 2 \) است، بنابراین

\[\Re(s) = \rho < -2 \]
جلد 2، شماره 2، پاییز و زمستان ۱۳۹۵

پژوهش‌های ریاضی
نشریه علوم دانشگاه خوارزمی

\[P(x) = \left(1 - \sum_{i<j}^d p_{ij} (1-p_{ij})\right) x^2 T_d(-2)^{k-1}\]

\[+ \frac{1}{2} \int_{-\infty}^{\infty} x^3 \Gamma(\rho + it + 1) f(\rho + it) T(\rho + it) dt. \]

با توجه به تعریف \(T_d(s) \) به عنوان

\[1 - \sum_{i<j}^d p_{ij} (1-p_{ij}) < 0. \]

بنابراین مجدداً بنا بر رابطه (۹) داریم:

\[E(B_{n,k}) = n^2 \left(1 - \sum_{i<j}^d p_{ij} (1-p_{ij})\right) T_d(-2)^{k-1} (1 + O(n^{-\eta})). \]

که در آن \(\eta > 0 \) می‌باشد.

(ب) حالت فرض کنید \((\log n)^{\frac{1}{2}} \xi \) در این صورت با انتقال خط انتگرال به نقطه زنی

\[\mathfrak{R}(s) = \rho = -2 - \frac{\xi}{\sqrt{\alpha \beta (-2) \log n}} + O\left(\frac{\xi^2}{\log n}\right). \]

داریم:

\[E(B_{n,k}) = n^2 \left(1 - \sum_{i<j}^d p_{ij} (1-p_{ij})\right) T_d(-2)^{k-1} \Phi(\xi) \left(1 + O\left(\frac{1 + |\xi|^2}{\sqrt{\log n}}\right)\right). \]

نتیجه ۱. اگر در قضیه ۱ آنگاه

\[1 - \sum_{i<j}^d p_{ij} (1-p_{ij}) = 1 - p_1^2 - p_2^2 = 2p_1p_2 \]

که نتایج پارک و همکاران [قضیه‌های ۱۰۴ از آن] را نتیجه می‌دهد.

آماردها

(آ) عملکرد یک گره

قابلیت ایجاد یک گره، عملکرد آن گره نامیده می‌شود. در این تعریف منظور از قابلیت تعادل بالا یک گره می‌باشد. به این صورت تعیین گره‌ها روزی مسیر از ریشه تا گره است [۴۱]. فرض کنید این متغیر تصادفی با نام \(D_n \) شود. در این صورت تعیین این متغیر تصادفی برای تقسیم امید ریاضی نمایی افقی خارجی بر تعادل رشته‌ها است [۴۲]. یعنی:

\[P(D_n = k) = \frac{E(B_{n,k})}{n}. \]

قضیه ۲. فرض کنید

\[H = p_1(t) (-\log p_1(t))^2 + p_2(t) (-\log p_2(t))^2 \]

\[h = p_1(t) \log \frac{1}{p_1(t)} + p_2(t) \log \frac{1}{p_2(t)}. \]
بررسی مدل‌ترای‌های d-d

یی‌اریب‌تصادفی

بنابراین برای هر \(n \) و \(k \) که در شرط \(\frac{1}{n} \log n \) صدق می‌کند،

\[
P(D_n = k) = \frac{B \left(-1, \log \left(\frac{p_i(t)}{p_i(T)} \right) \right) n}{\sqrt{2\pi(H - h^2) / h^3 \log n}} \exp \left\{ - \frac{\left(k - \frac{1}{h} \log n \right)^2}{2(H - h^2) / h^3 \log n} \right\} \times \left[1 + O \left(\frac{1}{\sqrt{\log n}} \frac{|k - \frac{1}{h} \log n|}{(\log n)^{2/3}} \right) \right].
\]

ب‌) ارتفاع تراي
طول درخت‌اتنین می‌باشد ارتفاع درخت نامیده می‌شود. با این تعیین اگر \(H_n \) بیانگر ارتفاع تراي باشد،

\[H_n = \max \{ j; B_{n,j} > 0 \} \]

آن گاه \(n \to \infty \) وقتی \(k \geq 0 \) و برای هر \(H_n \) تابع توزیع احتمال \(F_{H_n}(k) \)

\[F_{H_n}(k) = \exp \left\{ - \frac{1}{2} \exp \left(- \frac{4}{\log T_0(-2)} k + 2 \log n \right) \right\} + o(1). \]

برهان فرض کنید

\[G_k(x) = \sum_{n=0}^{\infty} F_{H_n}(k) \frac{x^n}{n!} \]

در این صورت دقیقاً مانند آنچه در مورد نمایه افقی خارجی برقرار بود، داریم.

\[G_k(x) = \prod_{i=1}^{d} G_{k-1}(p_i x), \quad k \geq 2. \]

حال با روش یکتاپی با تحلیل نمایه، برهان کامل \(\sum_{n=0}^{\infty} \frac{x^n}{n!} \) \(\log n \) \(\exp \left(- \frac{4}{\log T_0(-2)} k + 2 \log n \right) \) \(o(1) \)

نتیجه‌گیری
در این مقاله، از روش یک رهیافت ترکیبی‌ناتایی میانگین نمایه افقی خارجی در ترای محاسبه شد. نتایج از

طرحی ارتباط نمایه افقی خارجی با عمک گره و ارتفاع تراي به این پارامترها تسری‌داده داده شد. این رهیافت را می‌توان

برای درخت‌های جستجوی رقومی با روش‌های بهتر از دو نوع رقم نیز به کار برد.

تقدیر و تشکر
از پیشنهادهای ارزنده داوران گرامی و هیأت تحریریه محترم مجله که باعث بهبود مقاله شده است، تشکر و

قدردانی می‌کنیم.
منابع