 قضیه بیشاب- فلیس در مخروطهای نرم‌دار

ایلدار صادقی، علی حسن زاده؛
دانشگاه صنعتی سهند، دانشکده علوم پایه مهندسی

پیام‌رسان: esadeqi@sut.ac.ir

1. O. Valero
2. P. Selinger

مقدمه

در سال‌های اخیر محققان زیادی به پژوهش در قضیه بیشاب- فلیس در فضاهای شبه متری، مخروطهای شیم‌نودار و قضیه برداری نرم‌دار نامتقاضی اعلام‌گذاشته‌اند. چنین قضیه‌آرایی‌های ابزاری مهم در بررسی مسائل متنوعی در علوم کامپیوتر و نظریه تقریب، فیزیک کاربردی، آنالیز محدود و بهینه‌سازی فراهم می‌کنند. اکثری از این قضیه‌ها زیادی روز تولوزولوی علوم و آنالیز تابعی، برای توسعه نتایج شناخته شده نظریه کلاسیک فضاهای برداری نرم‌دار به فضاهای برداری نرم‌دار نمی‌پایه و مخروطهای شیم‌نودار، انجام شده است.

قاتیه بیشاب-فلیس یکی از قضیه‌ای اساسی در آنالیز تابعی است که دارای کاربردهای فراوانی در آنالیز تابعی، هندسه قضیه باناخ و نظریه بهینه‌سازی است (برای جزئیات بیشتر به [2]، [3]، [5]، [15] رجوع شود) حالت...
مفاهیم اولیه

تعریف و مفاهیم اولیه این بخش از [1], [2], [16] است.

فرض کنید \(B \) یک زیرمجموعه تابعی از فضای بازیت \(X \) و \(f \) و \(X \) که تابع خطی پوششی نیست روبی \(X \) باشد. \(\lambda \) یک مجموعه از \(f \) که باشد. \(\lambda \) اگر \(\lambda \) را در نقطه \(x \) اختیار کند، \(\lambda \) را در نقطه \(x \) حمایت ۰ می‌کند.

و یک نقطه انتها (با حامی) \(B \) است.

مجموعه اعداد حقیقی نامنفی را با \(\mathbb{R}^+ \) نشان می‌دهیم.

تعریف ۱. یک مخروط مجرد عبارت است از یک مجموعه \(V \) همراه با دو عملکر \(f: V \to \mathbb{V} \) و \((\lambda, \mu) \in \mathbb{R}^+ \) و \(v, w, u \in V \) بهطوری که بازیت \(0 \in V \) به مخروط \((V, +, 0) \) عبارت است از تابع

\[
\begin{align*}
\lambda v + w &= \lambda v + w, \\
(\lambda \mu) v &= \lambda (\mu v), \\
(\lambda + \mu) v &= \lambda v + \mu v, \\
\lambda v + w &= \lambda v + \lambda w, \\
v + w &= v + w, \\
v + w &= w + v, \\
v + w &= w + v, \\
v + w &= 0, \\
v + v &= v.
\end{align*}
\]

یادآوری می‌کنیم که یک نکته اصلی از مخروط \((V, +, 0) \) به مخروط \((V, +, 0) \) عبارت است از تابع

\[
\begin{align*}
\lambda v &= \lambda v, \\
v + v &= v.
\end{align*}
\]

تعریف ۲. مجموعه از اعداد حقیقی \(\mathbb{R}^+ \) و \(\lambda, \mu \in \mathbb{R}^+ \) و \(v, w, u \in V \) به‌طوری که بازیت \(0 \in V \) به مخروط \((V, +, 0) \) عبارت است از تابع

\[
\begin{align*}
\lambda v &= \lambda v, \\
v + v &= v.
\end{align*}
\]

1. V. Klee
2. Support
\[D = \downarrow D \]

و با نماد \(\downarrow D \) نشان می‌دهیم. گروپ مجموعه \(D \) پایینی است اگر

\[\{ u \in V : \exists v \in D : v \subseteq u \} \]

تعریف \(\uparrow D \) نشان می‌دهیم. گروپ مجموعه \(D \) بالایی است اگر

\[\mathcal{V} = \{ u \in V : u \leq V \} \quad \text{و} \quad v, w \in V \quad \text{و} \quad v \wedge w \in \mathcal{V} \]

تعریف ۲. تابع \(\| \cdot \| : V \rightarrow \mathbb{R}_+ \) را یک نرم روبرو مخروط \(V \) گویند هرگاه تابع

\[\| v + w \| \leq \| v \| + \| w \| \]

\[\| \lambda v \| = \| v \| \]

\[\| v \| = 0 \implies v = 0 \]

\[v \subseteq w \implies \| v \| \leq \| w \| \]

تعریف ۳. مجموعه ژانر متبرک \((D, \subseteq) \) را یک \(dcpo \) گویند اگر زیر مجموعه ژانر \(D \) از \(A \) دارد

\[\text{کوشک طی کردن کران بالا در } D \text{ باشد} \]

تعریف ۴. مخروط \(V \) را کامل گویند اگر ایدئال \(I \) یک \(dcpo \) باشد که

\[\| a \| \subseteq \| a \| \]

در مرجع \(I \) نشان داده شده است که اگر \((a_i)_{i \in I} \) یک تور صعودی در یک مخروط نرم‌دار کامل باشد و

\[\| a_i \| \subseteq \| a_i \| \]

موجود باشد، آن گاه \(w \subseteq a \) باشد. نشان می‌دهیم که \(dcpo \) نشانی از یک مخروط نرم‌دار \(V \) و با نماد \(v \subseteq w \) عناصری از یک \(dcpo \) باشد. گروپ مجموعه \(V \) پایینی-مسیر \(v \) است و با نماد \(v \subseteq w \) وجود داشته باشد \(w \in A \)، یک عناصر \(v \subseteq a \) در \(A \) داشته باشد \(a \in A \) با طولی که

\[\| a \| \]

بطروری که

\[\| a \| \]

تعریف ۵. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۶. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۷. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۸. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۹. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۰. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۱. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۲. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۳. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۴. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۵. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۶. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۷. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۸. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]

تعریف ۱۹. فرض کنید \(a \subseteq V \) یک قبیل \(dcpo \) باشد که

\[\| v \| \subseteq \| v \| \]

نیازی از یک مخروط نرم‌دار \(V \) باشد. نشان می‌دهیم که

\[\| a \| \subseteq \| a \| \]

بطروری که

\[\| a \| \]
در تعریف دیل مفهوم نقطه اتکاء بر مخروط‌های نرم‌دار، مکرر می‌کنیم.

de نکته‌ی اصلی

در تعریف دیل مفهوم نقطه اتکاء بر مخروط‌های نرم‌دار مکرر می‌کنیم.
قضیه بیشاب-فلپس در مخروط‌های نرم‌دار

تعریف ۲۴. فرض کنید \mathcal{B} یک مجموعه اسکات بر روی یک مخروط باشد. نقطه $x \in \mathcal{B}$ را یک نقطه اتکاء می‌گویند، اگر تابعک اسکات پیوسته خطي $\lambda : V \to \mathbb{R}$ وجود داشته باشد به طوری که V شامل تمام تابعک‌های خطي پیوسته λ می‌باشد.

چنین تابعکی اگر یک نقطه اتکاء اگر و تنها اگر λ محدود باشد.

گویند. \mathcal{B} یک مخروط نرم‌دار باشد. مخروط V^* شامل تمام تابعک‌های خطي پیوسته $\lambda : V \to \mathbb{R}$ می‌باشد.

اگر از این مجموعه اتکاء‌ها به دوین صورت تعیین کنیم:

$$\|f\| = \sup_{x \in V} |f(x)|$$

آن گاه V^* یک مخروط نرم‌دار است.

تذکر ۱۳. فرض کنید \mathcal{B} یک مجموعه اسکات است. فرض کنید $\lambda : \mathcal{B} \to \mathbb{R}_+$ یک تابعک خطي اسکات پیوسته باشد. اگر تابعک λ نقطه اتکاء برای نقطه اتکاء \mathcal{B} باشد، آن گاه λ می‌تواند نقطه اتکاء اتکاء \mathcal{B} باشند.

فرض کنید \mathcal{B} یک مجموعه اتکاء در مخروط درست نیست. فرض کنید \mathcal{B} مجموعه اتکاء در مخروط درست نیست و تابعک λ نقطه اتکاء اتکاء \mathcal{B} باشد. عضوی از مجموعه اسکات \mathcal{B} می‌تواند نقطه اتکاء \mathcal{B} باشد.

مطالعه ۱۴. فرض کنید \mathcal{B} یک مجموعه اتکاء در مخروط باشد. درست‌نیست. فرض کنید \mathcal{B} مجموعه اتکاء در مخروط درست نیست و تابعک λ نقطه اتکاء \mathcal{B} باشد. عضوی از مجموعه اسکات \mathcal{B} می‌تواند نقطه اتکاء \mathcal{B} باشد.

اگر \mathcal{B} بیشینه در مخروط باشد، آن گاه مشابه می‌باشد. به راحتی می‌توان بررسی کرد که \mathcal{B} مجموعه اتکاء \mathcal{B} در مخروط درست نیست.

موفقیت. فرض کنید \mathcal{B} مجموعه اتکاء در مخروط باشد. به راحتی می‌توان بررسی کرد که \mathcal{B} مجموعه اتکاء \mathcal{B} در مخروط درست نیست.

\[1\] Zorn's Lemma
در این صورت،

\[f(b) \leq \lambda \alpha \]

از این رو، به‌زای‌های یک مجموعه محدود باشد.

برای بررسی قضیه بیشاب، فلپس، به برخی مخروط‌های خاص نیاز دارم. فرض کنید \(V \) یک مخروط نرم‌دار باشد.

به‌زای‌های یک مجموعه محدود باشد.

\[K(f, \delta) = \{ x \in V : \delta \| x \| \leq f(x) \} \]

یک مجموعه محدود است.

\[f : V \to \mathbb{R} \]

\[dB \in \mathcal{B} \]

اگر باشد.

\[B \cap (m + K) = \{ m \} \]

\[\mu \geq \alpha \]

\[\lambda \geq 1 \]

\[m \in d + K \]

\[\lambda \geq 1 \]

\[\mu \geq \alpha \]

\[\delta \geq 1 \]

\[m \in d + K \]

\[m \in d + K \]

\[B \cap (m + K) = \{ m \} \]

\[B \cap m + K \]

\[dB \in \mathcal{B} \]

\[V \subseteq (m + (K \setminus \{ 0 \})) = \emptyset \].
مثال ۱۸. مخروط نرم‌دار را با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]

\[B \] در این صورت مجموعه مخروط اسکات بیان دارد. من نشان می‌دهم مجموعهای با فرض \(B \) است که هر نقطه اتکاگ می‌باشد و اکنون مجموعه زیرمجوعه اسکات بیش ازای هر، با استفاده از لفم (۱۶) قابل است. \[\exists B \subseteq \mathbb{R}^n \] بنابراین با توبولوژی اسکات در نظر بگیرید و فرض کنید که

\[B = \{ x + y \leq 1: x, y \geq 0 \}. \]
کلاسی از اعداد b به دست آمده که $b \in B$ و $m \in \mathbb{R}$. در نتیجه، به آرایه B و $g(b) \leq g(m)$، $b \in B$ و $m = x_0 + k$ وجود دارد بر طوری که

$$
\delta \| k \| \leq f(k) = f(m) - f(x_0) \leq f(y) - f(x_0) \leq \| f \| \epsilon.
$$

پس این انتظار گرفته شده که مجموعه m، مجموعه سطح و تابع خطی پیوسته باشد و f مجموعه اندازه نداشته باشد. اگر $b \in B$ و $m \notin B$، آنگاه $x_0 \in B \setminus \{x_0\}$ مجموعه سطح $y \notin B$ است. با توجه به این که $x_0 \notin B$, آنگاه $x_0 \notin B \setminus \{x_0\}$. اگر $x_0 \in B$ در نظر گرفته شده باشد، به دست می‌آید $m < 0$.

مثال 1

فرض کنید $\ell_1 \subset \ell_\infty$ بانه‌ای مجموعه ℓ_1 باشد. به عنوان مثال، ℓ_1 مجموعه هر $x \in \ell_\infty$ که $\| x \| = 1$ است. در این صورت، $e = (1, 1, 1, \ldots) \in \ell_\infty$ و $\ell_\infty \subset \ell_\infty$. در نتیجه، بررسی کردن z که متعلق به ℓ_∞ است، می‌تواند به این صورت باشد. در این صورت، $z \subset \ell_\infty$ و $\ell_\infty \subset \ell_\infty$. بررسی کردن z که متعلق به ℓ_∞ است، می‌تواند به این صورت باشد.
پیام تقدیر
از آقای دکتر اصغر رنجبری عضو هیئت علمی دانشگاه علوم ریاضی دانشگاه تبریز به دلیل نظرات و پیشنهادات مفید برای ارتقای کیفی این پژوهش تشکر می‌کنیم.

منابع
