استفاده از موجک هار برای بسط سری انتگرال‌های وینر کسری

فرشید میرزایی، افسون حمزة
دانشگاه ملایر، دانشکده علوم ریاضی و آمار، گروه ریاضی
درباره‌ی نویسنده: f.mirzaee@malayeru.ac.ir

چکیده
در این مقاله، ضمن بیان ویژگی‌هایی از توابع موجک هار، به ارائه روشی برای تقریب جواب انتگرال وینر کسری با پارامتر هرست H با استفاده از این توابع می‌پردازیم. همچنین تجزیه و تحلیل خطای روش مورد نظر ارائه شده است. این روش را روی چند مثال پیاده‌سازی کرده و نتایج عددی را در قالب جدول مقایسه خطای می‌دهیم. در نهایت مطلب که انتگرال‌های وینر کسری با روش‌های تقریبی و عددی به‌طور گسترده استفاده می‌شود، در این مقاله چکیده‌ای از تاریخچه و اهمیت انتگرال‌های وینر کسری و تکنیک‌های مربوط به حل آن‌ها در قالب جدول مقداری خطای می‌دهیم.

واژه‌های کلیدی: توابع موجک هار، انتگرال‌های وینر کسری، حرکت براونی

مقدمه
حسابان تصادفی در بررسی معادله‌های انتگرال تصادفی و دیفرانسیل تصادفی نقشی می‌بازد. همچنین حرکت براونی کسری در بسیاری از زمینه‌های علوم ریاضی و مهندسی، از جمله فیزیک، اقتصاد، زیست شناسی کاربرد زیادی دارد. بافتی روش‌های دقیق و کارآمد برای حل معادلات دیفرانسیل تصادفی و انتگرال تصادفی حائز اهمیت است. از آن‌جا که جواب‌های دقیق این معادلات در دسترس نیست با پیاده‌سازی روش‌های تقریبی و عددی به‌طور کامل استفاده از جمله روش‌های عددی برای حل این معادلات، از مبانی تقریب اویلر، محاسبات مالاپولو، انگرال اسکروهد و تکنیک‌های مشابهی استفاده می‌شود. در [6-11] همچنین در چند مقاله دیگر حل معادلات تصادفی بررسی شده است.

مقدمه
حسابان تصادفی در بررسی معادله‌های انتگرال تصادفی و دیفرانسیل تصادفی نقشی می‌بازد. همچنین حرکت براونی کسری در بسیاری از زمینه‌های علوم ریاضی و مهندسی، از جمله فیزیک، اقتصاد، زیست شناسی کاربرد زیادی دارد. بافتی روش‌های دقیق و کارآمد برای حل معادلات دیفرانسیل تصادفی و انتگرال تصادفی حائز اهمیت است. از آن‌جا که جواب‌های دقیق این معادلات در دسترس نیست با پیاده‌سازی روش‌های تقریبی و عددی به‌طور کامل استفاده از جمله روش‌های عددی برای حل این معادلات، از مبانی تقریب اویلر، محاسبات مالاپولو، انگرال اسکروهد و تکنیک‌های مشابهی استفاده می‌شود. در [6-11] همچنین در چند مقاله دیگر حل معادلات تصادفی بررسی شده است.

در این کار، با استفاده از بسط سری توابع موجک هار، انتگرال وینر کسری به صورت (1)

\[\int_{0}^{t} f(t) dB^H(t), \quad t \in [0,T], \]

برای 0 ≤ t ≤ H به‌طور که تابع f نابع معلوم و B^H که حالت اولیه به این که t = 0 برای i ≥ 0 تابعی معلوم و جبری در مجموعه اعداد مثبت، می‌توان آن را به صورت نمایش داد [18]

\[B^H(t) = \frac{1}{\Gamma(H + \frac{1}{2})} (Z(t) + \int_{0}^{t} (t-s)^{H-\frac{1}{2}} dB(s)), \]

f.mirzaee@malayeru.ac.ir
موجک هار و خواص آن

خانواده متعامد موجک هار، $h_n(t)$، روتی‌بازه (1،0) به‌دین صورت تعریف می‌شود [22].

$$h_n(t) = 2^n n \psi(2^n t - i), \quad j \in \mathbb{N}, \quad i \in \mathbb{Z},$$

به‌طوری‌که

$$h_n(t) = \begin{cases} 2^{\frac{j}{2}} & \alpha \leq t < \beta, \\ 0 & 0 \leq t < 1, \quad n = 1,2,\ldots, \\ -2^{\frac{j}{2}} & \beta \leq t < \gamma, \end{cases}$$

$$\alpha = \frac{k}{m}, \quad \beta = \frac{(k+0.5)}{m}, \quad \gamma = \frac{(k+1)}{m};$$

$$m = 2^l, \quad l = 0,1,\ldots, \quad k = 0,1,\ldots,m-1.$$
استفاده از موجک‌هار برای بسط سری‌انتگرال واینر‌کسری

را حداکثر مقدار از عدد صحیح L در نظر می‌گیریم و $M = 2^L$. عبارت دلخواه $f(t)$ را می‌توان با

$$f(t) = \sum_{i=0}^{M-1} a_i h_i(t), \quad i = 2^l + k, i \neq 0, \quad l = 0, 1, \ldots, L-1.$$

تقریب زد.

همچنین، توابع موجک‌هار متعامد نرمال هستند:

$$\int_{-\infty}^{\infty} h_i(y) h_j(y) dy = \begin{cases} 1 & i = j, \\ 0 & i \neq j. \end{cases}$$

در شکل 1، نموداری از موجک‌هار برای $L = 2$ نشان داده شده است.

\quad

\quad
همگرايی و آناليز خطای

در این بخش، روش ارائه شده بررسی می‌شود. فرض کنید که سری قطعی شده توابع موجک هار با استفاده از توابع موجک هار باشد. همچنین فرض کنید که $H = \frac{1}{2}$ باشد و $f(t)$ در بازه $(0,1)$ پیوسته باشد.

قضیه 1. فرض کنید $f(t)$ تابعی پیوسته در بازه $[a,b]$ باشد. در اینصورت، اگر $e(t) = f(t) - f_m(t)$ باشد، داریم:

$$\|e\| \leq \frac{L}{\sqrt{3M}}.$$ (1)

قضیه 2. خطای تقریب عددی انتگرال ویتاینگ با استفاده از توابع موجک هار را،

$$e_m = \frac{1}{\sqrt{2\pi}} \int_{0}^{1} (f(t) - f_m(t)) dB^H(t)$$

قرار می‌دهیم. آن‌گاه داریم:

$$\|e_m\| \leq \frac{L}{\sqrt{3M}}.$$ (2)

اثبات: با استفاده از (1) داریم:

$$\left\| \frac{1}{\sqrt{2\pi}} \int_{0}^{1} (f(t) - f_m(t)) dB^H(t) \right\|^2 = \frac{1}{2\pi} \int_{0}^{1} (f(t) - f_m(t))^2 dB^H(t)^2.$$ (3)

همچنین، در [1] مطرح شده است که اگر $H \in \left(\frac{1}{2}, 1\right)$ باشد، داریم:

$$E\left(\int_{0}^{1} (f(t) dB^H(t))^2 \right) = H (2H - 1) \int_{0}^{1} f^2(t) (z - t)^{2H-2} dz dt.$$ (4)

بنابراین با استفاده از رابطه (3) داریم:

$$E\left(\int_{0}^{1} (f(t) - f_m(t)) dB^H(t)^2 \right) = H (2H - 1) \int_{0}^{1} (f(t) - f_m(t))^2 (z - t)^{2H-2} dz dt = \frac{1}{2} (1 - t)^{2H-1} dt.$$ (5)

حال با توجه به این که

$$0 < t < 1 \quad \text{و} \quad H \in \left(\frac{1}{2}, 1\right),$$

می‌تویم:
استفاده از موجک هار برای بسط سری انتگرال‌های ویر کسری

$$\| \int_0^1 (f(t) - f_m(t)) dB^H(t) \| ^2 \leq \int_0^1 (f(t) - f_m(t))^2 dt.$$ \[
\text{سپس با توجه به قضیه 1 داریم:}
\]
$$\| \int_0^1 (f(t) - f_m(t)) dB^H(t) \| \leq \int_0^1 || f(t) - f_m(t) || dt \leq \frac{L}{\sqrt{5M}}$$

بنابراین، اثبات قضیه تکمیل شد.

مثال‌های عددی

در این بخش به منظور بیان کارایی روش موجک هار، دو مثال می‌آوریم. نتایج عددی با نرم‌افزار متلب به دست آمده است.

مثال 1: انتگرال ویر کسری (4) را در نظر بگیرید:

$$\int \sin(t^2) dB^H(t),$$ \[
(4)
\]

که جواب دقیق آن معلوم نیست. می‌توان مقدار انتگرال فوق را بدین صورت محاسبه کرد:

$$\int \sin(t^2) dB^H(t) = \sin(1) B^H(1) - \int_0^1 2\cos(t^2) B^H(t) dt,$$

که روی دوم این انتگرال فوق را با استفاده از روشهای ذوزنقه، حساب می‌گیریم. از طرف دیگر با استفاده از روشهای عددی و انحراف معیار $E(X)$ (جدول 1) می‌توانیم با استفاده از فاصله اطمینان \overline{X} داده شده در این مقاله متغیر H با 200 تکرار داده شده است.

جدول 1: میانگین انحراف معیار (S_E) و فاصله اطمینان برای میانگین با پارامتر $H = 0.5/5$ برای مثال 1

<table>
<thead>
<tr>
<th>L</th>
<th>X_E</th>
<th>S_E</th>
<th>\overline{X}</th>
<th>\overline{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.125</td>
<td>0.375</td>
<td>0.250</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.375</td>
<td>0.500</td>
<td>0.499</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.500</td>
<td>0.750</td>
<td>0.649</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>0.750</td>
<td>1.000</td>
<td>0.849</td>
<td>0.000</td>
</tr>
</tbody>
</table>

جدول 2: میانگین انحراف معیار (S_E) و فاصله اطمینان برای میانگین با پارامتر $H = 0.8/8$ برای مثال 1

<table>
<thead>
<tr>
<th>L</th>
<th>X_E</th>
<th>S_E</th>
<th>\overline{X}</th>
<th>\overline{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.18</td>
<td>0.35</td>
<td>0.234</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.35</td>
<td>0.60</td>
<td>0.499</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.50</td>
<td>1.00</td>
<td>0.649</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>0.75</td>
<td>1.50</td>
<td>0.849</td>
<td>0.000</td>
</tr>
</tbody>
</table>

مثال 2: انتگرال ویر کسری زیر را در نظر بگیرید:
بزرگ‌ویا، ریاضی یک
(نشریه علم دانشگاه خوارزمی)

چگونه آن معلوم نیست. می‌توان مقدار انتگرال فوق را بدین صورت محاسبه کرد:

\[\int e^{t^2} dB^H(t), \quad (5) \]

که جواب دقیق آن معلوم نیست. می‌توان مقدار انتگرال فوق را بدین صورت محاسبه کرد:

\[\int e^{t^2} dB^H(t) = eB^H(1) - \int 2te^{t^2} B^H(t)dt, \]

که را با استفاده از روش دیگری محاسبه می‌کنم. از طرف دیگر با استفاده از روش ارائه شده در این مقاله مقدار (5) را محاسبه می‌کنم. به طوریکه جدول‌های (3) و (4) میانگین خطای (\(X_E^2\)) و انحراف معیار (\(S_E\)) را برای مقادیر متغیر \(H\) با 200 گذار نشان داده است.

جدول 2. میانگین (\(X_E^2\))، انحراف معیار (\(S_E\)) و فاصله اطمنان برای میانگین با پارامتر \(H = 0\) برای مثال 2

<table>
<thead>
<tr>
<th>L</th>
<th>(X_E^2)</th>
<th>(S_E)</th>
<th>کران بالا</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.425</td>
<td>0.653</td>
<td>0.158</td>
</tr>
<tr>
<td>4</td>
<td>0.389</td>
<td>0.379</td>
<td>0.366</td>
</tr>
<tr>
<td>8</td>
<td>0.314</td>
<td>0.330</td>
<td>0.353</td>
</tr>
<tr>
<td>16</td>
<td>0.244</td>
<td>0.242</td>
<td>0.239</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

در این مقاله، با استفاده از توابع ویا به‌عنوان میانگین ویا به‌عنوان میانگی...
منابع