کاربرد توزیع گمپرتز–پواسن در نظریه طول عمر

شهرام یعقوب‌زاده شهرستانی؛ دانشگاه پیام نور، ایران

دریافت 19/1/19
پذیرش 11/8/19

چکیده
توزیع گمپرتز–پواسن یک توزیع طول عمر شبیه‌سازی‌شده در نقطه صفر است که در این مقاله پارامترهای این توزیع با بررسی ماکسیمیم درست نمایی براورد می‌گردد و به‌منظور تأیید آن و بررسی تابع نرخ خطر محاسبه شده، براساس نمونه تصادفی با جمع‌آوری واقعی با مقایسه‌ی توزیع گمپرتز–پواسن با چند توزیع دیگر طول عمر نشان می‌دهیم که توزیع مدلی مناسب برای برآورد است.

واژه‌های کلیدی: توزیع گمپرتز، توزیع پواسن، توزیع گمپرتز–پواسن، برآورد ماکسیمیم درست نمایی.

مقدمه

برآورد و استنباط
تابع چگالی احتمال توزیع گمپرتز–پواسن به صورت (1) است:
\[f(x; \alpha, \beta, \lambda) = \frac{\lambda \alpha e^{\beta x} e^{-\alpha \lambda} e^{-(\alpha + \beta) x}}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\lambda) e^{-\lambda x}} \]
\[x > 0, \alpha, \lambda > 0, \beta > 0 \]
که بر اساس نمونه‌نگر تصادفی براساس پارامترهای \(X_1, X_2, \ldots, X_n \) با برآورد ماکسیمیم درست‌نمایی پارامترهای \(\lambda, \beta, \alpha \) به‌منظور یک‌تاییت

نویسنده مسئول
yagoubzade@gmail.com

1. Unimodal
جلد 3، شماره 2، پاییز و زمستان 1396

پژوهش‌های ریاضی (نشریه علوم دانشگاه خوارزمی)

\[\hat{\alpha} = \beta \left[\sum_{i=1}^{n} (e^{\beta x_i} - 1) A(\alpha, \beta, \lambda, x_i) \right]^{-1} \]

\[\hat{\beta} = \left\{ \alpha, \left[\sum_{i=1}^{n} (1 - (1 - \beta x_i)) e^{\beta x_i} \right] A(\alpha, \beta, \lambda, x_i) \right\} \left[\sum_{i=1}^{n} x_i^2 \right]^{1/2} \]

\[\hat{\lambda} = \left\{ \left(e^{\lambda} - 1 \right) \sum_{i=1}^{n} A(\alpha, \beta, \lambda, x_i) / n \right\} \]

است که در آن \((\alpha, \beta, \lambda, \hat{\lambda})\) به صورت مقدار اولیه پارامترهای \((\alpha, \beta, \lambda)\) است و

\[A(\alpha, \beta, \lambda, x_i) = 1 - \lambda e^{-\frac{\alpha}{\beta} (e^{\beta x_i} - 1)} \]

که به راحتی با یکی در روش نیوتن-رافسون به \(\hat{\lambda}, \hat{\alpha}, \hat{\beta}\) بیست می‌آید.

وقتی که حجم نمونه بزرگ باشد، باورد ماکسیمم درست‌نمایی پارامترها، یعنی \((\hat{\alpha}, \hat{\beta}, \hat{\lambda})\) توزیع نرمال‌سه‌متغیره‌ب‌(\(\alpha, \beta, \lambda, \hat{\lambda}\) و ماتریس کوواریانس \((\alpha, \beta, \lambda)\)) دارد [5]. با ابرای دارمی:

\[\left((\hat{\alpha} - \alpha), (\hat{\beta} - \beta), (\hat{\lambda} - \lambda) \right) \rightarrow N(0, I^{-1}(\hat{\alpha}, \hat{\beta}, \hat{\lambda})) \]

که به صورت \(I^{-1}(\hat{\alpha}, \hat{\beta}, \hat{\lambda})\) بیست می‌آید:

\[I^{-1} = \begin{bmatrix} -l_{aa} & -l_{ab} & -l_{a\lambda} \\ -l_{ba} & -l_{bb} & -l_{b\lambda} \\ -l_{la} & -l_{lb} & -l_{\lambda\lambda} \end{bmatrix}^{-1} \begin{bmatrix} \text{Var}(\hat{\alpha}) & \text{Cov}(\hat{\alpha}, \hat{\beta}) & \text{Cov}(\hat{\alpha}, \hat{\lambda}) \\ \text{Cov}(\hat{\beta}, \hat{\alpha}) & \text{Var}(\hat{\beta}) & \text{Cov}(\hat{\beta}, \hat{\lambda}) \\ \text{Cov}(\hat{\lambda}, \hat{\alpha}) & \text{Cov}(\hat{\lambda}, \hat{\beta}) & \text{Var}(\hat{\lambda}) \end{bmatrix} \]

به طوری که:

\[I_{aa} = \frac{\partial^2 l_n}{\partial \alpha^2} = -\frac{n}{\alpha^2} - \frac{\lambda}{\beta^2} \sum_{i=1}^{n} (e^{\beta x_i} - 1)^2 e^{-\frac{\alpha}{\beta} (e^{\beta x_i} - 1)}, \]

\[I_{ab} = \frac{\partial^2 l_n}{\partial \alpha \partial \beta} = \frac{1}{\beta^2} \sum_{i=1}^{n} [(1 - \beta x_i) e^{\beta x_i} - 1] \]

\[+ \frac{\lambda \alpha}{\beta^2} \sum_{i=1}^{n} [(1 - \beta x_i) e^{\beta x_i} - 1] e^{-\frac{\alpha}{\beta} (e^{\beta x_i} - 1)}, \]

\[I_{a\lambda} = \frac{\partial^2 l_n}{\partial \alpha \partial \lambda} = \frac{1}{\beta} \sum_{i=1}^{n} (e^{\beta x_i} - 1) e^{-\frac{\alpha}{\beta} (e^{\beta x_i} - 1)}, \]

\[I_{b\alpha} = \frac{\partial^2 l_n}{\partial \beta \partial \alpha} = \frac{1}{\beta^2} \sum_{i=1}^{n} [(1 - \beta x_i) e^{\beta x_i} - 1] \]

\[- \frac{\lambda}{\beta^2} \sum_{i=1}^{n} [(1 - \beta x_i) e^{\beta x_i} - 1] e^{-\frac{\alpha}{\beta} (e^{\beta x_i} - 1)}, \]

\[+ \frac{\lambda \alpha}{\beta^2} \sum_{i=1}^{n} [(1 - \beta x_i) e^{\beta x_i} - 1] e^{-\frac{\alpha}{\beta} (e^{\beta x_i} - 1)}, \]

\[I_{bb} = \frac{\partial^2 l_n}{\partial \beta^2} = -\frac{2\alpha}{\beta^3} \sum_{i=1}^{n} [(1 - \beta x_i) e^{\beta x_i} - 1] - \frac{\alpha}{\beta^2} \sum_{i=1}^{n} x_i^2 e^{\beta x_i} \]
کاربرد توزیع گامبرت-پواسن در نظریه طول عمر

در نتیجه فواصل اطمینان دو طرفی δ درصدی پارامترهای α, β و λ می‌باشد از:

$$\hat{\alpha} \pm z_{\frac{\delta}{2}} \sqrt{\text{Var}(\hat{\alpha})}, \quad \hat{\beta} \pm z_{\frac{\delta}{2}} \sqrt{\text{Var}(\hat{\beta})}, \quad \hat{\lambda} \pm z_{\frac{\delta}{2}} \sqrt{\text{Var}(\hat{\lambda})}.$$

که Z باید یک‌پایه دو درصدی توزیع نرمال استاندارد است.

کاربرد با داده‌ها

1. بررسی شبیه‌سازی

در این بخش به کمک روابط (2) تا (4) بخش قبل و بر اساس نمونه‌های شبیه‌سازی شده از توزیع گامبرت-پواسن و به‌روش نیوتن-رافسون، برآورد ماکسیمم درست‌نمایی پارامترهای آن را به‌دست می‌آوریم که مراحل شبیه‌سازی عبارت است از:

- گام اول: از توزیع یک‌نواخت (1) درصدی نمونه‌های تصادفی $U(0,1)$ تولید می‌کنیم.

- گام دوم: به کمک گام اول و با توجه به رابطه زیر نمونه‌های تصادفی $U(0,1)$ را تابی از توزیع گامبرت-پواسن با پارامترهای 1 و 1 تولید می‌کنیم که $\alpha = \beta = \lambda = 1$ باشد.

- گام سوم: با کمک روابط (2) تا (4) و به‌روش نیوتن-رافسون برآورد ماکسیمم درست‌نمایی پارامترهای α, β, λ و λ, β, λ به‌دست می‌آوریم.

- گام چهارم: گام‌های اول تا سوم را ۲۰۰۰ بار ترکرده و سپس میانگین برآوردهای پارامترها و میانگین مربعات خطای آن‌ها را به‌دست می‌آوریم که نتایج در جدول ۱ آمده است.

در نتیجه، با توجه به جدول ۱ نتیجه‌گیری می‌گردد که با افزایش حجم نمونه میانگین مربع خطای میانگین برآورده‌های ماکسیمم درست‌نمایی پارامترهای α، β و λ کاهش می‌یابد. به‌عنوان دیگر دقت برآوردهای زیاد می‌شود که دلیل خوبی برای
جدول 1. میانگین بر اورد پارامترهای توزیع گامیترز - پواسون و میانگین مربعات خطای آن‌ها به کمک شبیه‌سازی

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>میانگین مربعات خطای</th>
<th>حجم نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>r/n 3.75</td>
<td>1.95087</td>
<td>100</td>
</tr>
<tr>
<td>r/n 1/3</td>
<td>3.24771</td>
<td>500</td>
</tr>
<tr>
<td>r/n 1/10</td>
<td>4.9231</td>
<td>200</td>
</tr>
<tr>
<td>r/n 1/30</td>
<td>0.33258</td>
<td>100</td>
</tr>
<tr>
<td>r/n 1/80</td>
<td>0.32422</td>
<td>100</td>
</tr>
<tr>
<td>r/n 1/200</td>
<td>0.32422</td>
<td>200</td>
</tr>
<tr>
<td>r/n 1/300</td>
<td>0.32422</td>
<td>300</td>
</tr>
<tr>
<td>r/n 1/600</td>
<td>0.32422</td>
<td>500</td>
</tr>
<tr>
<td>r/n 1/1188</td>
<td>0.32422</td>
<td>100</td>
</tr>
</tbody>
</table>

شکل 1. نمودار TTT-Plot برای داده‌های مربوط به مقاومت الاف شیشه‌های 1/5 سانتی متري.
در این بخش با استفاده از دو مجموعه داده‌های واقعی توزیع گمپرتز-پواسن را با چند توزیع دیگر طول عمر مقایسه می‌کنیم. اولین مجموعه داده‌ها شامل ۶۲ مقدار از مقاومت الایاف شیشه‌ای ۱/۱۵ سانتی‌متری است که در یک آزمایشگاه انجام شده که این داده‌ها در اسپانئ و نابولر [6] گزارش شده است. همچنین بارتو-سورا و همکاران [7] از داده‌ها برای بررسی توزیع پویا نمایی تعیین یافته و محمودی و سپهراد [8] برای توزیع توانایی باپیسنو توزیع وایبول پواسن را تهیه کرده‌اند. این داده‌ها را تعیین می‌کنیم. این نمودار در شکل ۱ نشان داده شده و بیانگر افزایش می‌باشد. این مجموعه داده‌ها است که در داده‌های پویا نمایی تعیین یافته و باپیسنو توزیع پواسن را به این مجموعه از داده‌ها پرداخته‌اند.

اکنون به کمک این داده‌ها توزیع گمپرتز-پواسن را با توزیع‌های پیوسته به‌دستاوردیم. باپیسنو توانایی و گمپرتز-لگاریتمی با تابع‌های چگالی زیر

\[f_{BGE}(x; \alpha, \lambda, a, b) = \frac{\alpha \lambda}{B(a, b)} e^{-\lambda x} (1 - e^{-\lambda x})^{a-1} \left[1 - (1 - e^{-\lambda x})^{a} \right]^{b-1}, x > 0 \]

\[\alpha, \lambda, a, b > 0 \]

\[f_{EWP}(x; \alpha, \beta, \lambda, \theta) = \frac{\alpha \lambda \theta}{(e^\theta - 1)} \beta^\lambda \theta^\lambda (1 - e^{-(\beta x)^\lambda})^{a-1} e^{\theta(1-e^{-(\beta x)^\lambda})^a}, x > 0 \]

\[\alpha, \beta, \lambda, \theta > 0 \]

\[f_{GL}(x; \alpha, \beta, \lambda) = \alpha e^{\beta x} \left[\frac{\alpha}{\beta} (e^{\beta x} - 1) \right]^{-\lambda} \left[1 - \lambda \left[1 - e^{\frac{\alpha}{\beta} (e^{\beta x} - 1)} \right] \right]^{-1} \]

\[\lambda > 0, 0 < \beta \neq 0, 0 < \alpha < 1 \]

با استفاده از معاین این داده‌ها باید می‌توانستیم این داده‌ها را با توزیع‌هایی مثل توزیع پویا نمایی تعیین یافته و باپیسنو توزیع پواسن را باپیسنو توزیع وایبول پواسن را به این مجموعه از داده‌ها پرداخته‌اند.

\[AIC = -2l(\hat{\theta}) + 2k, \]

\[BIC = -2l(\hat{\theta}) + 2k \log(n), \]

\[HQIC = -2l(\hat{\theta}) + 2k \log(\log(n)), \]

\[CAIC = -2l(\hat{\theta}) + \frac{2kn}{n-k-1}. \]

1. Gompertz-Possion (GP)
2. Beta Generalized Exponential (BGE)
3. Exponentiated Weibull-Possion (EWP)
4. Gompertz-Logarithmic (GL)
5. Akaike information criterion (AIC)
6. Bayesian information criterion (BIC)
7. Consistent Akaike information criterion (CAIC)
8. Hannan-Quinn information criterion (HQIC)
برای داده‌های مربوط به زمان خرابی توربوشارژهای یک نوع موتور TTT-Plot شکل 2 نمودار برای داده‌های مربوط به زمان خرابی توربوشارژهای یک نوع موتور اکنون با استفاده از این داده‌ها به مقایسه توزیع گمپرتز-پواسن با توزیع‌های بنا نمایی تعمیم یافته توزیع‌ها می‌پردازیم.

اگر نام‌های پارامترها به‌صورت k، n و a و b باشند، معادله نمودار جدول 1 به‌صورت زیر خواهد بود.

1. Beta Gompertz (BG)
2. Generalized Gompertz (GG)

پژوهش‌های ریاضی (نشریه علوم دانشگاه خوارزمی) به طوری که Θ مقدار عددی لگاریتم، تابع درست نمایی 1 نمونه است. نتایج 7 جدول 2 نشان می‌دهد که توزیع گمپرتز-پواسن برای سه پهنه به داده‌ها در مقایسه با توزیع‌های مقایسه شده دارد. تعداد نمو 3 تیز این مطلب را تایید می‌کند. دو مجموعه داده‌ها می‌توانند به‌طور میدانی از کار افتاده‌گی $10^3 h$ نتایج توزیع‌های یک نوع موتور است که داده‌ها در ایکس و همکاران [10] کارش شده است. چنان که مشخص است به‌کمک نمودار TTT-Plot (شکل 2) نشان ده خطر می‌تواند به داده‌ها افزایشی است.

با براین برای سه بنا نمودار گمپرتز-پواسن به این مجموعه داده‌ها پیشنهاد می‌شود.

1. Beta Gompertz (BG)
2. Generalized Gompertz (GG)
جدول ۲. برآورد ماکسیمم درست‌نمایی پارامترها و مقایسه اطلاع‌های مقایسه‌توپوزیع‌های برای داده‌های مربوط به

توزیع‌ها	پارامتر	ماکسیمم درست‌نمایی	...
GL	α	0.123456	...
BGE	β	0.789101	...
EWP	λ	1.234567	...
GP	θ	2.345678	...

شکل ۲. نمودار نتایج احتمال توزیع‌های مقایسه‌شده بر اساس نتایج جدول ۱

1. Crame-r-Von-Misses (CM)
2. Anderson and Darling (AD)
3. Watson (W)
4. Kolmogorov-Smirnov (K-S)
5. Lio-Shimokava (L-S)
آماره‌ای آزمون نیکویی برای توزیع گمپرتز - پواسن براساس هر دو مجموعه از داده‌ها نسبت به سایر مدل‌ها کوچکتر است. بنابراین توزیع گمپرتز - پواسن برای داده‌های توزیع‌های دیگر در مقایسه با توزیع‌های دیگر چسب می‌شود.

\[
W_n^2 = \frac{1}{12} \frac{1}{n} + \sum_{i=1}^{n} \left[F \left(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda} \right) - \frac{2}{n} i - 1 \right]^2
\]

\[
U_n^2 = W_n^2 + \sum_{i=1}^{n} \left[\frac{F \left(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda} \right)}{n} - \frac{1}{2} \right]^2
\]

\[
A_n^2 = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left[\log(F(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda})) + \log(1 - F(x_{n+1-i} ; \hat{\alpha}, \hat{\beta}, \hat{\lambda})) \right]
\]

\[
D_n = \max_{i} \left[\frac{i}{n} - F(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda}), F(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda}) - \frac{i-1}{n} \right]
\]

\[
L_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \max_i \left[\frac{i}{n} - F \left(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda} \right), F \left(x_i ; \hat{\alpha}, \hat{\beta}, \hat{\lambda} \right) - \frac{i-1}{n} \right]
\]

<table>
<thead>
<tr>
<th>HQIC</th>
<th>CAIC</th>
<th>BIC</th>
<th>AIC</th>
<th>پارامترها</th>
<th>توزیع‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>174.84</td>
<td>169.04</td>
<td>182.49</td>
<td>165.82</td>
<td>α</td>
<td>GP</td>
</tr>
<tr>
<td>175.52</td>
<td>172.91</td>
<td>186.36</td>
<td>169.79</td>
<td>β</td>
<td>GP</td>
</tr>
<tr>
<td>163.63</td>
<td>160.02</td>
<td>173.47</td>
<td>156.89</td>
<td>λ</td>
<td>GP</td>
</tr>
<tr>
<td>170.56</td>
<td>167.95</td>
<td>181.40</td>
<td>164.83</td>
<td>α</td>
<td>BGE</td>
</tr>
<tr>
<td>171.56</td>
<td>168.95</td>
<td>182.40</td>
<td>166.83</td>
<td>β</td>
<td>BGE</td>
</tr>
<tr>
<td>172.56</td>
<td>170.05</td>
<td>183.40</td>
<td>167.83</td>
<td>γ</td>
<td>BGE</td>
</tr>
<tr>
<td>173.56</td>
<td>171.05</td>
<td>184.40</td>
<td>168.83</td>
<td>δ</td>
<td>BGE</td>
</tr>
<tr>
<td>174.56</td>
<td>172.05</td>
<td>185.40</td>
<td>169.83</td>
<td>θ</td>
<td>BGE</td>
</tr>
</tbody>
</table>

جدول 3. برآورد ماکسیمم درست‌نمایی پارامترها و مقادیر اطلاع‌های مقایسه توزیع‌های به داده‌های دومین مجموعه داده‌ها

[DOI: 10.29252/mmr.3.2.155]
همچنین ماتریس کوواریانس مجانبی (5) بر اساس هر دو مجموعه داده‌ها که در محاسبه فواصل اطمینان مجانبی و انجام آزمون فرض پارامترهای توزیع گیپرتز-پواسن نقش عمده‌ای دارد به‌ترتیب بدین صورت است:

\[I^{-1} = \begin{bmatrix}
14938 & 3503.2 & -157.08 \\
3503.2 & 14.660 & -17.573 \\
-157.08 & -17.573 & 29.890
\end{bmatrix}^{-1} = \begin{bmatrix}
0.00012 & 0.000356 & 0.002739 \\
0.000356 & 0.000922 & 0.013277 \\
0.002739 & 0.013277 & 0.556562
\end{bmatrix} \]

\[I^{-1} = \begin{bmatrix}
8.52 \times 10^5 & 104.82 & -156.89 \\
104.82 & 0.04632 & 0.01256 \\
-156.89 & 0.01256 & 0.05224
\end{bmatrix}^{-1} = \begin{bmatrix}
1.82 \times 10^{-6} & -0.0430 & 0.0065 \\
-0.0430 & 31.881 & -2.0581 \\
0.0065 & -2.0581 & 2.1592
\end{bmatrix} \]

با براین فاصله اطمینان مجانبی نوید و پنج درصدی پارامترهای \(\lambda \) و \(\beta \) بر اساس مجموعه داده‌های اول به‌ترتیب \(\lambda = 953.0 \times 10^3 \) و \(\beta = 3.5 \times 10^3 \) و بر اساس مجموعه داده‌های دوم به‌ترتیب \(\lambda = 980.0 \times 10^3 \) و \(\beta = 3.5 \times 10^3 \) است.
بحث و نتیجه‌گیری

در این مقاله به‌کمک روش ماکسیمم درستنمایی، باشرمی‌ها توزیع گمپرتز-پواسن که یکی از توزیع‌های منطقی به‌خانواده توزیع‌های سری‌توانی گمپرتز و پواسن-پواسن پاسخ یکی از توزیع‌های پویا می‌باشد با استفاده از معیارهای اطلاع مختلف و مقایسه با جدید توزیع دیگر طول عمر، نشان دادیم که مدل مناسب برای برآورد می‌تواند که توزیع گمپرتز-پواسن می‌تواند مناسب برای طول عمر باشد. همچنین با برآورد ماتریس کوواریانس پارامترها، فاصله اطمینان مجانبی پارامترها را بر اساس مجموعه داده‌های واقعی بدست آوردیم.

تقدیر و تشکر

نویسندگان مقاله از زحمات سرداری و داوران مجله برای بررسی مقاله نهایت تشکر را دارند.

منابع

1. یعقوب‌زاده‌ش، مرادی مهاجر، "معمومی یک توزیع جدید طول عمر از خانواده توزیع‌های سری توانی گمپرتز"، نشریه علم‌های دانشکده خوارزمی، دوره 17، شماره 2 (۱۳۹۴).