 حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای های اویلر

فرشید میرزاانی، نسرین صمدیار
دانشگاه ملاپر، دانشکده علوم ریاضی و آمار، گروه ریاضی
پذیرش ۱۳۸۵/۰۷/۰۷

چکیده
در این مقاله با حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از ماتریس‌های عملیاتی چندجمله‌ای های اویلر را به‌دست می‌آوریم. تحلیل متغیر موجود در معادله انتگرال ولترا تصادفی با استفاده از سری‌های چندجمله‌ای اویلر تقریبی

زده و سپس از ماتریس‌های عملیاتی چندجمله‌ای های اویلر استفاده می‌کنیم. این کار حل معادله انتگرال ولترا تصادفی منفرد ضعیف به حل یک دستگاه معادلات جبری نیاز دارد. که با روش مناسبی می‌توان آن را حل کرد. سپس کران

بالای خطه روش محور شده برای حل معادلات انتگرال ولترا تصادفی منفرد ضعیف را اثبات می‌کنیم. همچنین برای بررسی دقیق و کارایی روش مناسب عددی آنها می‌شود. نتایج آنها شده با استفاده از اجرا کردن برنامه‌ای نوشته شده در نرم‌افزار متلب به‌دست‌آمده است.

واژه‌های کلیدی: معادلات انتگرال ولترا تصادفی، معادلات انتگرال ولترا منفرد ضعیف، ماتریس‌های عملیاتی، چندجمله‌ای های اویلر.

مقدمه
معادلات انتگرال یکی از شاخه‌های علم ریاضی است که کاربردهای فراوانی در مسائل مهندسی و فیزیک دارد. یک معادله انتگرال را منفرد می‌گوییم اگر یکی از جهود انتگرال نامته‌ای باشد و یا این‌که هم‌اکنون معادله انتگرال در نقطه‌ای

نقطه‌ای از دامنه انتگرال گیری یکی از اولیه با رضایت نرمالی در نظر گرفته شود. معادلات انتگرال منفرد را در سال ۱۸۴۳ گئی‌سی بنیا و در مقاله‌اش درباره معادلات انتگرال گئی‌سی به‌عنوان یکی از معادلات مطرح می‌کند. گئی‌سی معادلات در کاربردهای مهندسی و فیزیک تحلیل‌های انجام گرفته کرده و مکانیک‌سیال‌های ظاهر می‌شود. امروزه این معادلات به‌دست کاربرد زیادی در تحلیل دقیق و پیچیده و در استحکام‌سنجی است. محققان به‌سیاری را به حل عددی این معادلات سوچ داده اند. دست‌های مخفی‌نگار و پژوهشگران از روش‌های همبستگی و چندجمله‌ای های مختلفی برای حل این معادلات استفاده کرده‌اند. از جمله روش‌های همبستگی [۱]، [۲] کارکین [۳]، و مکاکی [۴]، روش بینتی بر ماتریس عملیاتی [۵]، روش‌های بدون شکستگی [۶]، روش‌های مناسب [۷]، استفاده از چندجمله‌ای های برنشتاین [۸] و توابع

ترکیبی [۹] برای حل این معادلات به کار برده شده است. در برخی موارد سیستم بررسی شده به یک منبع اختلاف وابسته‌ی در دین قرار داده و در برخی موارد برای مدل‌سازی سیستم از معادلات دیفرانسیل تصادفی یا معادلات انتگرال تصادفی استفاده

می‌کنیم [۱۰].

fa_mirzaee@yahoo.com
نوبه‌نده صنیعیه‌الیکه
در این مقاله یک روش عددی برای حل معادلات انتگرال ولترا تشکیل دهنده ماتریس‌های عملیاتی چندجمله‌ای اول‌ارائه می‌دهیم. معادله بررسی شده در این مقاله بدین صورت است:

\[ f(t) = f_0 + \int_0^t \frac{1}{\sqrt{t-s}} f(s)ds + \int_0^t k(t,s)f(s)dB(s), \quad t \in [0,1], \]

که در آن \( f(t) \) و \( f(t) \) برای \( k(t,s) \) و \( s \in [0,1] \) تعریف شده‌اند. (\( \Omega, F, P \) تابع مکان و \( \Omega, F, P \) تابع مکان) که ویژه شده است که باعث تغییر شود. (\( 0 \) نیز یک حرکت ارائه است. در معادله انتگرال ولترا تک‌تک انتگرال ضعیف و انتگرال دوم یک انتگرال اینو است.

چندجمله‌ای اول‌ارائه

تعریف: چندجمله‌ای اول‌ارائه اول با استفاده از رابطه (2) ساخته می‌شود [15].

\[ \sum_{k=0}^{n} \binom{n}{k} E_k(t) + E_n(t) = 2t^n. \]

که در آن \( E_k(t) \) ضرایب دوجمله‌ای تک‌تک. چهار جمله اول این چندجمله‌ایها بدین صورت است:

\[ E_0(t) = 1, \]
\[ E_1(t) = t - \frac{1}{2}, \]
\[ E_2(t) = t^2 - t, \]
\[ E_3(t) = t^3 - \frac{3}{2} t^2 + \frac{1}{4}. \]

در رابطه (2) اگر \( n \) یک ماتریس پایین مثلثی با درایه‌های قطری غیرصفر است، پس وارون‌پذیر است. در نتیجه از طرفی ماتریس \( D \) یک ماتریس پایین مثلثی با درایه‌های قطری غیرصفر است، پس وارون‌پذیر است. در نتیجه:

\[ E(t) = D^{-1}X(t). \]

این چندجمله‌ای‌ها دارای ویژگی‌های مفید هستند:

- چندجمله‌ای اول‌ارائه با استفاده از رابطه بازگشتی زیر قابل محاسبه‌اند:

\[ E_n(t+1) + E_n(t) = 2t^n. \]

مشتق هر چندجمله‌ای اول‌ارائه از مرتبه \( n \) یا می‌توان به صورت محدود از چندجمله‌ای اول‌ارائه مرتبه \( n-1 \) نوشته، یعنی برای \( n=1, 2, 3, \ldots \) داریم.
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای اویلر

$E_n(t) = nE_{n-1}(t)$.

ماتریس‌های عملیاتی بر پایه چندجمله‌ای اویلر ماتریس‌های تکن تکن هستند، از این رو، بعد از گسترش‌سازی معادلات انتگرال ولترا تصادفی ضعیف، دستگاه حاصل به‌راحتی قابل حل است. هم چنین استفاده از این توابع به‌دلیل داشتن ماتریس‌های عملیاتی تکن باعث کاهش حجم محاسبات می‌شود و به‌همین دلیل یکی از روش‌های منفرد به صرفه‌برای حل عددی معادلات انتگرال ولترا تصادفی است.

مقایسه نتایج عددی ارائه شده در این مقاله نشان می‌دهد که استفاده از روش چندجمله‌ای اویلر جواب‌ها را به‌مراتب دقیق‌تر ارائه می‌دهد. هم‌چنین محاسبات نرم‌افزاری برای چنین یک‌پایه‌ای ساده‌تر است و زمان محاسبات به‌نحو مطلوبی کاهش می‌یابد.

تقریب توابع با استفاده از چندجمله‌ای اویلر

قضیه ۱. فرض کنیم $f$ تابعی یک متغیره دلخواه باشد. این تابع را می‌توان با استفاده از چندجمله‌ای اویلر به‌صورت (۴) تقریب زد:

$$f(t) = f_N(t) = \sum_{i=0}^{N} f(t_i)E_i(t) = F^T(t) = E(t)^T F,$$

که در آن $E = [f_0, f_1, \ldots, f_N]^T$ بردار ضرایب چندجمله‌ای اویلر است.

هم‌چنین ضرایب $f_i$ از طریق این رابطه محاسبه می‌شوند [۱۶]:

$$f_i = \begin{cases} \frac{1}{N!} \int_0^1 f^{(N)}(t) dt & i = N, \\ \frac{1}{i!} \left( \int_0^1 f^{(i)}(t) dt \right) + \sum_{k=2}^{N+1} \frac{2(t)}{k!} \binom{k+i+1}{k} E_{k+2}(0)f_{i+k} & i = N-1, N-2, \ldots, 0. \end{cases}$$

قضیه ۲. تابع دومتغیره $k$ را می‌توان با استفاده از سری تیلور و سری قطع شده چندجمله‌ای اویلر به‌صورت (۵) تقریب زد:

$$k(t,s) = \sum_{i=0}^{N} \sum_{j=0}^{N} k_{ij} t^i s^j = X^T(t)K_x X(s),$$

$$k(t,s) = \sum_{i=0}^{N} \sum_{j=0}^{N} k_{ij}^e E_i(t)E_j(s) = E^T(t)K_e E(s).$$

که در آن دارای ماتریس‌های ماتریس‌های $K_e = [k_{ij}^e]_{(N+1)\times(N+1)}$ و $K_x = [k_{ij}]_{(N+1)\times(N+1)}$ با این روابط محاسبه می‌شوند:

$$k_{ij}^e = \frac{1}{i! j!} \left( \frac{\partial^{i+j}}{\partial t^i \partial s^j} k(0,0) \right), \quad i, j = 0,1,\ldots,N,$$

$$K_e = D^T K_x D.$$
با استفاده از این خاصیت داریم
\[
\int_0^1 E_n(s)ds = \frac{1}{n+1}(E_{n+1}(t) - E_{n+1}(0)), \quad n = 0, 1, \ldots.
\]
پس انگرال بردار
\[
\int_0^1 E(s)ds = PE(t) + \frac{1}{N+1}E_{N+1}(t)I_{N+1},
\]
بدین صورت است:
(6)
چندجمله‌ای های اویلر است که بدین صورت تعیین می‌شود:
\[
P = \begin{pmatrix}
-E_1(0) & 1 & 0 & \cdots & 0 \\
-E_2(0) & 0 & 1 & \cdots & 0 \\
& \vdots & \ddots & \ddots & \vdots \\
-E_N(0) & 0 & 0 & \cdots & 1 \\
-E_{N+1}(0) & 0 & 0 & \cdots & 0 \\
\end{pmatrix}
\]
با صرف نظر کردن از جمله دوم در دیدار (6) داریم:
(7)
با استفاده از روابط (4) و (7)، انگرال هر تابع داده‌شده مثل \( f \) با می‌توان به صورت (8) تقیی زد:
\[
\int_0^1 f(s)ds = \int_0^1 F^T E(s)ds = F^T PE(t).
\]
(8)
گاهی لازم است که حاصل ضرب بردار (1) در \( E(t) \) در برداری دلخواه مثل \( E^T(t)C \) محاسبه شود. طبق [16] داریم:
\[
E(t)E^T(t)C = (D^{-1}X(t))E^T(t)C = D^{-1}[E^T(t)C, E^T(t)C, \ldots, E^T(t)C]^T
\]
\[
= \sum_{i=0}^{N} c_i E_i(t)E_i(t) + \sum_{i=0}^{N} c_i E_i(t), \ldots, \sum_{i=0}^{N} c_i E_i(t) ]^T.
\]
(9)
حال نواحی را برای \( k = 0, 1, \ldots, N \) با استفاده از سری اویلر به صورت (10) تقیی زنیم:
\[
t^k E_i(t) = E_i(t)e_{k,i}.
\]
(10)
که در آن \( \epsilon_k = [\epsilon_{k,1}, \epsilon_{k,2}, \ldots, \epsilon_{k,N}]^T \) ماتریس ضرایب اویلر است. از طرفی با استفاده از رابطه (3) داریم:
\[
Q = \int_0^1 E(t)E^T(t)dt = \int_0^1 (D^{-1}X(t))D^{-1}X(t))^T dt
\]
\[
= D^{-1}\left[\int_0^1 X(t)X^T(t)dt\right](D^{-1})^T = D^{-1}H(D^{-1})^T.
\]
(11)
که در آن \( N \) ماتریس هیلبرت از مرتبه \( 1 + N \) است.
با استفاده از روابط (10) و (11) داریم:
\[
\int_0^1 t^k E_i(t)dt = (\int_0^1 E_i(t)E^T(t)dt)e_{k,i} = Qe_{k,i},
\]
بنابراین برای \( i, k = 0, 1, \ldots, N \) داریم:
 حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای‌های اویلر

\[
e_k, i = Q^{-1} \int_0^t k E(t) E_i(t) dt = Q^{-1} \left[ \int_0^t k E(t) E_0(t) dt \right]
\]

\(\vdots\)

\(\int_0^t k E(t) E_N(t) dt \)

\[
\sum_{i=0}^N c_i t^k E_i(t) = \sum_{i=0}^N c_i (E(t) e_{k,i}) = \sum_{i=0}^N c_i \left( \sum_{j=0}^N e_{k,j} E_j(t) \right) = \sum_{i=0}^N E_i(t) \left( \sum_{j=0}^N c_i e_{k,j} \right)
\]

\[
\begin{pmatrix}
\sum_{i=0}^N c_i e_{k,i} \\
\vdots \\
\sum_{i=0}^N c_i e_{N,i}
\end{pmatrix}
= E^T(t) \begin{pmatrix}
e_{k,0}, e_{k,1}, \ldots, e_{k,N} \end{pmatrix} C = E^T(t) \tilde{F}_k,
\]

که در آن \(E_k\) یک ماتریس از مرتبه \((N+1)\times(N+1)\) است که استون‌های آن به‌صورت تقریب می‌زنیم. در نتیجه حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای‌های اویلر.
روش عددی

در این بخش به حل عددی معادلات انتگرال ولترا تصادفی منفرد (1) با استفاده از ماتریس‌های عملیاتی جندجمله‌های اویلر می‌پردازیم. برای این منظور ابتدا نتیجه‌انتگرال (1) را می‌توان بدین صورت تقریب زده:

\[
\int_{0}^{T} f(s) dB(s) = \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} f(s) dB(s) = \int_{0}^{T} P_s E(t) dt.
\]

در نتیجه انتگرال ابتدا مقدار دلخواهی مانند \( f \) را می‌توان بدین صورت تقریب زده:

\[
\int_{0}^{T} f(s) dB(s) = \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} f(s) dB(s) = \int_{0}^{T} P_s E(t) dt.
\]
همگرایی و آنالیز خطا

قضیه 3. [19] اگرتابع یک متغیره $f$ و تابع دو متغیره $k$ توابعی هموار باشند و $k_{N_{f}}$ و $f_{N_{f}}$ تقريب این توابع با استفاده از سری قطعی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای لر $L$ به ترتیب جواب دقیق و جواب تقریبی معادله (1) باشند. به علاوه فرض کنید:

$$|f(t)| \leq \rho, \quad \forall t \in [0,1].$$

$$|k(t,s)| \leq M, \quad \forall (t,s) \in [0,1] \times [0,1].$$

$$1 - \|B\|_{\infty} (M + \alpha(N)) > 0. \quad \text{ (3)}$$

در این صورت

$$|f(t) - f_{N_{f}}(t)| \leq \frac{2f(\eta) - f_{N_{f}}(\eta) + \|B\|_{\infty} \alpha(N) \rho}{1 - \|B\|_{\infty} (M + \alpha(N))},$$

که در آن

$$\alpha(N) = CN_{f}(2\pi)^{-N}.$$ 

اثبات: معادله انتگرال لور را داریم:

$$f(t) = f_{0} + \int_{0}^{t} \frac{1}{\sqrt{t-s}} f(s)ds + \int_{0}^{t} k(t,s) f(s)dB(s), \quad t \in [0,1].$$

تقریب این معادله بدین صورت است:

$$f_{N_{f}}(t) = f_{0} + \int_{0}^{t} \frac{1}{\sqrt{t-s}} f_{N_{f}}(s)ds + \int_{0}^{t} k_{N_{f}}(t,s) f_{N_{f}}(s)dB(s), \quad t \in [0,1].$$

در نتیجه:

$$f(t) - f_{N_{f}}(t) = \int_{0}^{t} \frac{f(s) - f_{N_{f}}(s)}{\sqrt{t-s}}ds + \int_{0}^{t} (k(t,s) f(s) - k_{N_{f}}(t,s) f_{N_{f}}(s))dB(s).$$

با فرض پیوسته بودن تابع $f(t)$ در بازه $[0,1]$ همواره مشتّت است، طبق قضیه 4.4، یا وجود داره که

$$\int_{0}^{t} \frac{f(s) - f_{N_{f}}(s)}{\sqrt{t-s}}ds = (f(\eta) - f_{N_{f}}(\eta)) \int_{0}^{t} \frac{1}{\sqrt{t-s}}ds = 2(f(\eta) - f_{N_{f}}(\eta)) \sqrt{t}.$$ 

بنابراین

$$|f(t) - f_{N_{f}}(t)| \leq 2|f(\eta) - f_{N_{f}}(\eta)|\sqrt{t} + \|B\|_{\infty} |k(t,s)f(s) - k_{N_{f}}(t,s)f_{N_{f}}(s)|.$$ 

از طرفی

$$1 - \|B\|_{\infty} (M + \alpha(N)) > 0. \quad \text{ (3)}$$
نتایج عددی

در این بخش برای عملکرد روشی مناسب و تقریبی برای حل این معادله با استفاده از تفاوت گرمایی و فرض اول و دوم مورد بررسی قرار گرفته است. در این مقاله برای این روش در نتایج مطابقت با روشهایی که با استفاده از نرم‌افزار متلب بدست آمده است، به پایه روابط (14) و (15) نتایج می‌شود:

\[
\left| f(t) - f_N(t) \right| \leq 2\left| f(\eta) - f_N(\eta) \right| + \left\| f'(s) - f_N'(s) \right\| \alpha(N) \rho.
\]

در نهایت با استفاده از فرض سوم کران این خطای نتایج می‌شود:

\[
\left| f(t) - f_N(t) \right| \leq 2\left| f(\eta) - f_N(\eta) \right| + \left\| f'(s) - f_N'(s) \right\| \alpha(N) \rho.
\]

در جدول 1 مقدار دقیق و تقریبی برای حل این معادله با استفاده از روش‌هایی که مطالعه شده است معرفی گردیده است. همچنین نمودارهای جواب دقیق و تقریبی برای این روش در نمودارهایی به ازای این مقادیر \( m = 12, n = 6 \) و \( m = 6, n = 3 \) در شکل 1 و 2 آورده شده است.

جدول 1. جواب دقیق و جواب تقریبی مثال 1

<table>
<thead>
<tr>
<th>m=12, n=6</th>
<th>m=6, n=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(t) = \frac{1}{12} - \int_0^t \frac{1}{\sqrt{t-s}} ds - \int_0^t \sin(s) dB(s), \quad t \in [0,1], )</td>
<td></td>
</tr>
<tr>
<td>( f(t) = \frac{1}{12} \exp\left(-t + \frac{\sin 2t}{8} - 2\sqrt{t - \int_0^t \sin s dB(s)} \right). )</td>
<td></td>
</tr>
</tbody>
</table>
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ایهای اولر

مثال 1: نمودار جواب دقیق و تقریبی برای $m = 6, n = 3$

مثال 2: نمودار جواب دقیق و تقریبی برای $m = 12, n = 6$

معادله انتگرال ولترا تصادفی منفرد ضعیف زیر را در نظر می‌گیریم:

$$f(t) = \frac{1}{24} \int_0^t \frac{1}{\sqrt{t-s}} f(s) ds - \int_0^t (s + 4) \cos sf(s) dB(s), \quad t \in [0, 1].$$

که جواب دقیق این معادله بدین صورت است:

$$f(t) = \frac{1}{24} \exp(-2\sqrt{t} - \frac{1}{2}(t^2 + 8t + 14)\sin t - (t + 4)\cos t - 4 - \int_0^t (s + 4) \cos sdB(s)).$$

در جدول 2 جواب دقیق و تقریبی برای حل این معادله با استفاده از روش سری جنجدگمایه‌ای اویلر و توابع باکم‌کال با پالس برای مقادیر $m = 12, n = 6$ و $m = 6, n = 3$ در شکل‌های 3 و 4 آورده شده است.
جدول ۲. جواب دقیق و جواب تقبیلی مثال ۲

<table>
<thead>
<tr>
<th>m=۶, n=۳</th>
<th>m=۱۲, n=۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش اویلر</td>
<td>روش اویلر</td>
</tr>
<tr>
<td>جواب دقیق</td>
<td>جواب تقیبی</td>
</tr>
<tr>
<td>نقطه</td>
<td>نقطه</td>
</tr>
<tr>
<td>۰۱۹۷</td>
<td>۰۲۱۹</td>
</tr>
<tr>
<td>۰۱۱۵</td>
<td>۰۲۱۹</td>
</tr>
<tr>
<td>۰۰۱۹</td>
<td>۰۲۱۹</td>
</tr>
<tr>
<td>۰۰۱۵</td>
<td>۰۲۱۹</td>
</tr>
<tr>
<td>۰۰۰۱</td>
<td>۰۲۱۹</td>
</tr>
</tbody>
</table>

شکل ۳. نمودار جواب دقیق و تقبیلی برای مثال ۲

\[ m = 6, n = 3 \]

\[ f(t) = \frac{1}{48} - \int_0^t \frac{1}{\sqrt{t-s}} f(s) ds - \int_0^t 2t \cos sf(s) dB(s), \quad t \in [0, 1]. \]
Jakseq دو عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای ایهای اولر

که جواب دقیق این مسئله بدین صورت است:

\[ f(t) = \frac{1}{48} \exp(-2\sqrt{t} - t^3 - \frac{1}{2} t \sin 2t - \int_0^t 2t \cos s dB(s)). \]

در جدول ۲ جواب دقیق و جواب تقریبی برای حل این معادله با دو روش سری چندجمله‌ای اولر و توابع بلاک-پالس برای مقادیر \( m = 12, n = 6 \) و \( m = 6, n = 3 \) گیری شده است. همچنین نمودارهای جواب دقیق و تقریبی به آنها این مقادیر \( m, n \) در شکل‌های ۵ و ۶ آورده شده است.

جدول ۲. جواب دقیق و جواب تقریبی مثال ۳

<table>
<thead>
<tr>
<th></th>
<th>روش اویلر</th>
<th>روش اویلر</th>
<th>جواب دقیق</th>
<th>جواب دقیق</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>روش بلاک پالس</td>
<td>روش بلاک پالس</td>
<td>جواب دقیق</td>
<td>جواب دقیق</td>
</tr>
<tr>
<td>m=6, n=3</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
</tbody>
</table>

شکل ۵. نمودار جواب دقیق و تقریبی برای مثال ۳

مثلث ۴. معادله انتگرال ولترا تصادفی منفرد ضعیف زیر را در نظر می‌گیریم:

\[ f(t) = \frac{1}{12} - \frac{1}{6} \int_0^t f(s) ds - \int_0^t e^s \sin sf(s) dB(s), \quad t \in [0, 1]. \]

که جواب دقیق این مسئله بدین صورت است:

\[ f(t) = \frac{1}{12} \exp(-2\sqrt{t} - t^3 - \frac{1}{4} t e^{2t} + \frac{1}{8} e^{2t} \sin 2t - \int_0^t e^s \sin s dB(s)). \]
شکل ۳. نمودار جواب دقیق و تقریبی برای $m = 12, n = 6$.

در جدول ۴ جواب دقیق و جواب تقریبی برای حل این معادله با دو روش سری جندجمله‌هاي اویلر و توابع بلاک-پالس برای مقادیر $m = 12, n = 6$ و $m = 6, n = 3$ بهره‌مندی نشان داده شده است. نمودارهای جواب دقیق و تقریبی در آنها نیز به ارائه است.

جدول ۴. جواب دقیق و جواب تقریبی مثل ۳

<table>
<thead>
<tr>
<th>$m=6$, $n=3$</th>
<th>$m=12$, $n=6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش اویلر</td>
<td>$/ / / /$</td>
</tr>
<tr>
<td>جواب دقیق</td>
<td>$/ / / /$</td>
</tr>
<tr>
<td>روش بلاک-پالس</td>
<td>$/ / / /$</td>
</tr>
</tbody>
</table>

شکل ۴. نمودار جواب دقیق و تقریبی برای $m = 6, n = 3$. 

$mn = 12, 6$
 حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای اویلر

شکل 8. نمودار جواب دقیق و تقریبی برای مثال $m=12, n=6$.

نتیجه‌گیری
از آن جاکن حل تحلیلی بسیاری از معادلات انتگرال تصادفی غیرممکن و یا بسیار پیچیده است. از روش‌های عددی برای حل آن‌ها استفاده می‌شود. ما در این مقاله معادلات انتگرال تصادفی منفرد ضعیف را با استفاده از روش ماتریس عملیاتی سری قطعی شده چندجمله‌ای اویلر حل کردیم. نتایج عددی بدست آمده از این روش را با روش توابع بلاک-پالس مقایسه کردیم. نتایج آن‌ها شده گویای کارایی و دقیق این روش نسبت به روش توابع بلاک-پالس است.

تشکر و قدردانی
از داوران محترم مقاله که نظرات ارزشنه آن‌ها موجب بهبود مقاله شد و همچنین از سردبیر مجله و اعضای هیئت تحریریه قدردانی می‌شود.

منابع


