حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای اویلر

فرشید میرزایی، نسرین صمدیار
دانشگاه ملایر، دانشکده علوم ریاضی و آمار، گروه ریاضی

چکیده
در این مقاله به حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از ماتریس‌های عملیاتی چندجمله‌ای اویلر پردازیم. برای این منظور ابتدا ماتریس عملیاتی و ماتریس عملیاتی تصادفی چندجمله‌ای اویلر را به مسیر می‌آوریم. تمامی توابع موجود در معادلات انتگرال ولترا تصادفی را با استفاده از سری‌های چندجمله‌ای اویلر تقریب می‌نماییم. پس کران بالای خطای روش مطرح شده برای حل معادلات انتگرال ولترا تصادفی منفرد ضعیف را اثبات می‌کنیم. به همین‌وای بررسی دقیق و کارایی روش با استفاده از اجرا چرخ‌پیمایی نوشته شده در

واژه‌های کلیدی: معادلات انتگرال ولترا تصادفی، معادلات انتگرال ولترا منفرد ضعیف، ماتریس‌های عملیاتی، چندجمله‌ای اویلر

مقدمه
معادلات انتگرال یکی از شاخه‌های علم ریاضی است که کاربردهایی در مسائل مهندسی و فیزیک دارد. یک معادله انتگرال را منفرد می‌نامند اگر یکی از حدود انتگرال نامتناهی باشد و با این که هسته معادله انتگرال در نقطه یا نقاطی از دامنه انتگرال کوچک یک یا کوچک‌تر از ارزشی که برای نقاطی که جایگزین می‌شوند از دست داده می‌شود. معادلات انتگرال منفرد را اولین بار ریاضی نرژی به‌نام آل در 1823 معرفی کرد. این نوع معادلات در کاربردهای مهندسی و فیزیک تعدادی از ابزارهای کاربردی مکانیک سیالات ظاهر می‌شوند. امروزه این معادلات به‌دلیل کاربرد زیاد توجه ویژه‌ای را به خود می‌خورند و از آن‌جا که حل تحلیلی اغلب معادلات انتگرال سیال به‌جای مشابه و در مواردی غیرمکمل است، محفل تحقیق این بسیاری را به حل عددی این معادلات سوق داد است. در سال‌های اخیر محققین و پژوهشگران از روش‌های متعددی برای حل این معادلات استفاده کرده‌اند. از جمله روش‌های هم‌محفل [1], [2], [3], [4], [5], [6], روش سنتی بر ماتریس عملیاتی [6], روش‌های بدون شبکه [7], روش‌های تصوری [8], استفاده از چندجمله‌های برنشتاین [9] و توابع ترکیبی [10] برای حل این معادله‌ها به کار برده شده است. در برخی موارد سیستم پرسری به شکل ویژه به‌کار می‌رود و در این موارد برای بررسی پرسری سیستم به‌کار رفته توانایی وابستگی باقی می‌ماند. در این موارد برای حل این سیستم با استفاده از معادلات دیفرانسیل تصادفی با متغیرهاهای انتگرال تصادفی استفاده می‌شود [14] - [10].

fa_mirzaee@yahoo.com

نویسنده سمنول

[DOI: 10.29252/mmr.4.1.91]
در این مقاله یک روش عددی برای حل معادلات انتگرال ولتا تصادفی منفرد با استفاده از ماتریس‌های عملیاتی جندجمله‌ای‌های اولیه ارائه می‌دهیم. معادله بررسی شده در این مقاله به صورت می‌باشد:

\[
 f(t) = f_0 + \int_0^1 \frac{1}{\sqrt{s-s}} f(s) ds + \int_0^t f(t,s) dB(s), \quad t \in [0,1],
\]

که در آن \(f(t) \) \(f(t,s) \) و \(B(t) \) برای \([0,1] \) تعریف شده‌اند. (\(\Omega, F, P \)) تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \). تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \).

در این مقاله انتگرال ولتا تصادفی منفرد (1) انتگرال ولتا اول یک انتگرال منفرد ضعیف و انتگرال دوم یک انتگرال اینو است.

چندجمله‌ای‌های اولیع

در این مقاله یک روش عددی برای حل معادلات انتگرال ولتا تصادفی منفرد با استفاده از ماتریس‌های عملیاتی جندجمله‌ای‌های اولیع ارائه می‌دهیم. معادله بررسی شده در این مقاله به صورت می‌باشد:

\[
 f(t) = f_0 + \int_0^1 \frac{1}{\sqrt{s-s}} f(s) ds + \int_0^t f(t,s) dB(s), \quad t \in [0,1],
\]

که در آن \(f(t) \) \(f(t,s) \) و \(B(t) \) برای \([0,1] \) تعریف شده‌اند. (\(\Omega, F, P \)) تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \). تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \).

در این مقاله انتگرال ولتا تصادفی منفرد (1) انتگرال ولتا اول یک انتگرال منفرد ضعیف و انتگرال دوم یک انتگرال اینو است.

چندجمله‌ای‌های اولیع

در این مقاله یک روش عددی برای حل معادلات انتگرال ولتا تصادفی منفرد با استفاده از ماتریس‌های عملیاتی جندجمله‌ای‌های اولیع ارائه می‌دهیم. معادله بررسی شده در این مقاله به صورت می‌باشد:

\[
 f(t) = f_0 + \int_0^1 \frac{1}{\sqrt{s-s}} f(s) ds + \int_0^t f(t,s) dB(s), \quad t \in [0,1],
\]

که در آن \(f(t) \) \(f(t,s) \) و \(B(t) \) برای \([0,1] \) تعریف شده‌اند. (\(\Omega, F, P \)) تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \). تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \).

در این مقاله انتگرال ولتا تصادفی منفرد (1) انتگرال ولتا اول یک انتگرال منفرد ضعیف و انتگرال دوم یک انتگرال اینو است.

چندجمله‌ای‌های اولیع

در این مقاله یک روش عددی برای حل معادلات انتگرال ولتا تصادفی منفرد با استفاده از ماتریس‌های عملیاتی جندجمله‌ای‌های اولیع ارائه می‌دهیم. معادله بررسی شده در این مقاله به صورت می‌باشد:

\[
 f(t) = f_0 + \int_0^1 \frac{1}{\sqrt{s-s}} f(s) ds + \int_0^t f(t,s) dB(s), \quad t \in [0,1],
\]

که در آن \(f(t) \) \(f(t,s) \) و \(B(t) \) برای \([0,1] \) تعریف شده‌اند. (\(\Omega, F, P \)) تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \). تابعی معمول و \(k(t,s) \) تابعی مجزه ال است که باید تغییر داشته باشد \(s \).

در این مقاله انتگرال ولتا تصادفی منفرد (1) انتگرال ولتا اول یک انتگرال منفرد ضعیف و انتگرال دوم یک انتگرال اینو است.

چندجمله‌ای‌های اولیع
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله‌ای اویلر

ماتریس‌های عملیاتی بر باشگاه چندجمله‌ای اویلر ماتریس‌های تکن هستند، از این رو، بعد از گسترش‌سازی معادلات انگرال ولترا تصادفی منفرد ضعیف، استفاده حاصل بهره‌مند کل است. هم چنین استفاده از این توابع به‌دلیل داشتن ماتریس‌های عملیاتی تکن باعث کاهش حجم محاسبات می‌شود و به‌همین دلیل یکی از روش‌های مقرون به صرفه برای حل عددی معادلات انتگرال ولترا و دیفرانسیل است.

مقایسه نتایج عددی ارائه شده در این مقاله نشان می‌دهد که استفاده از روش چندجمله‌ای اویلر جواب‌ها را به‌مراتب دقیقتر ارائه می‌دهد. همچنین محاسبات تابعی از جمله چنین بی‌های خاصی ساده‌تر است و زمان محاسبات بیشتر مطلوبی کاهش می‌یابد.

تقیی توابع با استفاده از چندجمله‌ای اویلر

قضیه ۱: فرض کنیم f تابعی یک متغیره دلخواه باشد. این تابع را می‌توان با استفاده از چندجمله‌ای اویلر به‌صورت (۴) تقیی زده:

\[f(t) - f_N(t) = \sum_{i=0}^{N} f_i E_i(t) = F^T E(t) = E(t)^T F, \]

که در آن $E = [f_0 f_1 \ldots f_N]^T$ بردار ضرایب چندجمله‌ای اویلر است.

همچنین ضرایب چندجمله‌ای اویلر از طریق این رابطه محاسبه می‌شوند [۱۶]:

\[f_i = \begin{cases} \frac{1}{N!} \int_0^t (t)^i dt & i = N, \\ \frac{1}{i!} \left(\frac{1}{0!} \int_0^t (t)^i dt \right) + \sum_{k=0}^{N-i-1} \frac{2(1)^i}{k+2} \binom{k+1}{k+1} E_{k+2}(0) f_{i+k+1} & i = N - 1, N - 2, \ldots, 0. \end{cases} \]

قضیه ۲: دیگری از نمایه k را می‌توان با استفاده از چندجمله‌ای اویلر به‌صورت (۵) تقیی زده:

\[k(t, s) = \sum_{i=0}^{N} \sum_{j=0}^{N} k_{ij} E_i(t) E_j(s) = E^T(t) K E(s). \]

که در آن دارایه‌های ماتریس K با این رابطه محاسبه می‌شوند:

\[K_{ij} = \begin{cases} \frac{1}{i! j!} \left(\frac{c^{i+j}}{i! j!} k(0,0) \right) & i, j = 0, 1, \ldots, N, \\ 0 & \text{دریافتی از جمله}. \end{cases} \]

ماتریس عملیاتی چندجمله‌ای اویلر

چندجمله‌ای اویلر دارای خواص مهمی است. از جمله:

\[E_n(t) = nE_{n-1}(t), \quad n = 1, 2, \ldots. \]
با استفاده از این خاصیت داریم:
\[\int_{0}^{1} E_n(s) ds = \frac{1}{n+1} (E_{n+1}(t) - E_{n+1}(0)), \quad n = 0, 1, \ldots. \]
پس انتگرال بردار:
\[\int_{0}^{1} E(s) ds = PE(t) + \frac{1}{N+1} E_{N+1}(t) I_{N+1}, \quad (7) \]
بدین صورت است:
\[\text{که در آن} \ (N+1) \text{آخرین ستون ماتریس همایی از مرتبه} \ (N+1) \text{است و} \ P \text{ماتریس عملیاتی انتگرال‌گیری} \]
\[\text{چندجمله‌ای‌های اویلر است که بدین صورت تعریف می‌شود:} \]
\[P = \begin{pmatrix} -E_1(0) & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -E_{N}(0) & 0 & 0 & \cdots & 1 \\ -E_{N+1}(0) & 0 & 0 & \cdots & 0 \\ \hline \end{pmatrix}. \]
با صرف نظر کردن از جمله دوم در دعبارت (6) داریم:
\[\int_{0}^{1} E(s) ds = PE(t). \quad (8) \]
با استفاده از روابط (6) و (8)، انتگرال‌ها نتایج دلخواه مثل را می‌توان به صورت (8) تقریب زد:
\[\int_{0}^{t} f(s) ds = \int_{0}^{t} F(t) E(s) ds = F^T PE(t). \quad (8) \]
گاهی لازم است که حاصل ضرب بردار (1) در طبقات دلخواه مثل \(E^T(t) \) در برداری دلخواه مثل \(C \in \mathbb{R}^{N+1} \) محاسبه شود. طبق [16] داریم:
\[E(t)E^T(t)C = (D^{-1}X(t))E^T(t)C = D^{-1}[E^T(t)C, t E^2(t)C, \ldots, t^N E^T(t)C]^T. \quad (9) \]
حال نتایج (1) را برای \(k = 0, 1, \ldots, N \) با استفاده از سری اویلر به صورت (10) تقریب می‌زنیم:
\[t^k E_i(t) \approx E^T(t) e_{k,i}. \quad (10) \]
که در آن \(e_{k,i} = [e_{k,i}^1, e_{k,i}^2, \ldots, e_{k,i}^N]^T \) بردار ضرایب اویلر است. از طرفی با استفاده از رابطة (3) داریم:
\[Q = \int_{0}^{1} E(t) E^T(t) dt = \int_{0}^{1} (D^{-1}X(t)(D^{-1}X(t))^T dt = D^{-1} (\int_{0}^{1} X(t) X^T(t) dt) D^{-1} = D^{-1} H D^{-1}. \quad (11) \]
که در آن \(N \) ماتریس هیلبرت از مرتبه \(N+1 \) است.

با استفاده از روابط (10) و (11) داریم:
\[\int_{0}^{1} t^k E_i(t) E(t) dt = (\int_{0}^{1} E(t) E^T(t) dt) e_{k,i} = Q e_{k,i}. \quad (11) \]
بتاگراهای برای \(i, k = 0, 1, \ldots, N \) داریم:
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای‌های اویلر

\[e_{k,i} = Q^{-1} \int_0^t t^k E(t) E_i(t) dt = Q^{-1} \left(\int_0^t t^k E_i(t) E_0(t) dt \right) \]

و با استفاده از رابطه (9) داریم:

\[\sum_{i=0}^N c_i t^k E_i(t) = \sum_{i=0}^N c_i (E^T(t) e_{k,i}) = \sum_{i=0}^N c_i (\sum_{j=0}^k e_{k,j} E_j(t)) = \sum_{j=0}^N E_j(t) (\sum_{i=0}^N c_i e_{k,j}) \]

\[= E^T(t) \left(\sum_{i=0}^N c_i e_{k,i} \right) \]

\[= E^T(t) [e_{k,0}, e_{k,1}, \ldots, e_{k,N}] C = E^T(t) \tilde{F}_k, \] (12)

که در آن \(k \) یک ماتریس از مرتبه \((N+1)\times(N+1)\) است که ایجاد شده در سمت راست معادله (9) و استفاده از روابط (9) و (12) داریم:

\[E(t) E^T(t) C = \hat{C} E(t), \]

\[\hat{C} = D^{-1} \tilde{C}^T \]

ماتریس عملیاتی تصادفی چندجمله‌ای‌های اویلر

انگرال ایتوی بردار چندجمله‌ای‌های اویلر را می‌توان بدین صورت تقریب زد:

\[\int_0^t E(s) dB(s) = D^{-1} \int_0^t X(s) dB(s). \]

از طروری

\[\int_0^t X(s) dB(s) = \begin{pmatrix} \int_0^t dB(s) \\ \int_0^t s dB(s) \\ \vdots \\ \int_0^t s^{N-1} dB(s) \end{pmatrix} = X(t) B(t) - \begin{pmatrix} 0 \\ \int_0^t B(s) ds \\ \vdots \\ N \int_0^t s \cdot B(s) ds \end{pmatrix}. \]

حال اگر انتگرال‌های ایتوی در سمت راست عبارت اخیر را با روش انتگرال گیری ذوزنقه‌ای تقریب می‌زنیم، همچنین

\[B(t) \text{ تقریب می‌زند. در نتیجه } B(0.25) \text{ و } B(0.5) \text{ را بازیابی می‌کنیم.} \]
۱۹\[\int_{0}^{\tau} f(s) dB(s) = F^{T} E(t) dB(s) = F^{T} P_{s} E(t)\]

در نتیجه انتگرال این‌طور هر تابع دلخواهی مانند \(f\) را می‌توان بیدین صورت تقریب زده.

روش عددی

در این بخش به جل عددی معادلات انتگرال ولترا تصادفی منفرد (۱) با استفاده از ماتریس‌های عملیاتی چندجمله‌ای اولیه می‌پردازیم. برای این منظور ابتدا توابع \(k(t,s)\) و \(f(t)\) را با استفاده از سری قطعی شده چندجمله‌ای اولیه اولبر تقریب می‌زنیم:

\[f(t) = F^{T} E(t) = E^{T} (t) F,\]
\[k(t,s) = E^{T} (t) K_{e} E(s) = E^{T} (s) K_{e} E(t).\]

با جای گذاری این تقریب‌ها در معادله انتگرال (۱) و استفاده از رابطه (۳) داریم:

\[F^{T} E(t) = f_{0} + F^{T} D^{-1} \int_{0}^{\tau} \frac{X(s)}{\sqrt{t-s}} ds + E^{T} (t) K_{e} \int_{0}^{\tau} \phi(t) \Phi^{T} P_{s} E(t).\]

از طرفی داریم [۱۸]:

\[\int_{0}^{\tau} \frac{s^{n}}{\sqrt{t-s}} ds = \frac{\sqrt{\pi} \Gamma(n+1)}{\Gamma(n+3/2)} t^{n+1/2},\]

بنابراین می‌توان نوشت:

\[\int_{0}^{\tau} \frac{X(s)}{\sqrt{t-s}} ds = [\frac{3}{2} \Gamma(3/2), \frac{3}{2} \Gamma(5/2), \ldots, \frac{3}{2} \Gamma(N+1)]^{T} = \Phi(t).\]

در نتیجه رابطه (۱۲) را می‌توان بیدین صورت تقریب زده. حال این معادله را در (۱) نقطه نیوتن-کاتسکه باصوس زیر تعریف می‌شود:

\[t_{i} = \frac{2i+1}{2(N+1)}, \quad i = 0, 1, \ldots, N.\]

در نتیجه

\[F^{T} E(t_{i}) = f_{0} + F^{T} D^{-1} \Phi(t_{i}) + E^{T} (t_{i}) K_{e} \int_{0}^{\tau} \phi(t) \Phi^{T} P_{s} E(t_{i}). \quad i = 0, 1, \ldots, N.\]

با حل این دستگاه و ترکیب کردن بردار مجهول \(F\) مقدار (۱) از طریق رابطه (۱) نواخته می‌شود.
همگرایی و آتالیز خطا

قضیه 3. (19) اگر تابع f کم متوانی دو تابع f_N و f تابعی هموار باشد و k تابعی در سه نوع ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای‌ها لر باشد:

\[
\|f - f_N\|_N \leq C(2\pi)^N, \\
\|k - k_N\|_N \leq CN(2\pi)^N.
\]

که در آن \(C\) یک ثابت مثبت است.

 قضیه 4. (20) اگر تابع f در پایه $[a,b]$ پیوسته باشد و g در این بازه تغییرات عمده، در این صورت تقریب این تابع با استفاده از سری پیوسته‌ای‌ها برای آن واریز می‌شود که در آن

\[
\int_{0}^{b} f(x)g(x)dx = \int_{0}^{b} f(\eta)g(x)dx.
\]

قضیه 5. فرض کنید f و f_N به ترتیب جواب دقیق و جواب تقریبی معادله (1) باشد. بعلاوه فرض کنید

\[
|f(t)| \leq \rho, \quad \forall t \in [0,1]. \\
|k(t,s)| \leq M, \quad \forall (t,s) \in [0,1] \times [0,1]. \\
1 - \|B\|_N (M + \alpha(N)) > 0.
\]

در این صورت

\[
\bigg| f(t) - f_N(t) \bigg| \leq \frac{2[f(\eta) - f_N(\eta)] + \|B\|_N \alpha(N) \rho}{1 - \|B\|_N (M + \alpha(N))}.
\]

که در آن

\[
\alpha(N) = CN(2\pi)^N.
\]

اگزات: معادله انتگرال زیر را داریم:

\[
f(t) = f_0 + \int_{0}^{t} \frac{1}{\sqrt{t-s}} f(s)ds + \int_{0}^{t} k(t,s)f(s)dB(s), \quad t \in [0,1].
\]

تقریب این معادله به صورت است:

\[
f_N(t) = f_0 + \int_{0}^{t} \frac{1}{\sqrt{t-s}} f_N(s)ds + \int_{0}^{t} k_N(t,s)f_N(s)dB(s), \quad t \in [0,1].
\]

در نتیجه:

\[
f(t) - f_N(t) = \int_{0}^{t} \frac{f(s) - f_N(s)}{\sqrt{t-s}} ds + \int_{0}^{t} (k(t,s)f(s) - k_N(t,s)f_N(s))dB(s).
\]

با فرض پیوسته بودن تابع $f(t)$ در بازو $[0,t]$ همواره مشیت است، طبق قضیه 4، چون تابع با ضابطه $\frac{1}{\sqrt{t-s}}$ در بازو $[0,t]$ وجود دارد که

\[
\int_{0}^{t} \frac{f(s) - f_N(s)}{\sqrt{t-s}} ds = \int_{0}^{t} \frac{1}{\sqrt{t-s}} ds = 2f(\eta) - f_N(\eta)\sqrt{t}.
\]

بنابراین

\[
|f(t) - f_N(t)| \leq 2|f(\eta) - f_N(\eta)|\sqrt{t} + \|B\|_N |k(t,s)f(s) - k_N(t,s)f_N(s)|.
\]

از طرفی

\[
\text{DOI: 10.29252/mmr.4.1.91} \\
\text{[Downloaded from mmr.khu.ac.ir on 2024-03-05]}
\]
با استفاده از قضیه 3 و فرض اول و دوم داریم:

$$|k(t,s)\int f(s) - f_N(s) - k_N(t,s)\int f_N(s)| \leq |k(t,s)|\int |f(s) - f_N(s)| + |k(t,s) - k_N(t,s)|\int |f(s) - f_N(s)| + |f(s)|. $$

در نهایت با استفاده از فرض سوم کران این خط نتیجه می‌شود:

$$|f(t) - f_N(t)| \leq 2|\int f(\eta) - f_N(\eta)| + \|B\|\alpha(N)\rho.$$

نتایج عددی

در این بخش برای مشاهده نتایج و کاربرد روش بلاک‌پالس در حل معادله ریاضی و تعریف پیاده‌های اولیر توافقي بلاک‌پالس شده است. توجه شود که در این مثال نتیجه‌برده‌های بلاکپالس استفاده شده m تعداد پایه‌های بلاکپالس استفاده شده و n تعداد پایه‌های اولیر است.

مثال 1. معادله انتگرال ولترا تصادفی منفرد ضعیف زیر را در نظر می‌گیریم:

$$f(t) = \frac{1}{12} - \int_0^t \frac{1}{\sqrt{t-s}} f(s)ds - \int_0^t \sin sf(s)dB(s), \quad t \in [0,1],$$

که جواب دقیق این مسئله به صورت است:

$$f(t) = \frac{1}{12} \exp(-\frac{t}{4}) + \frac{\sin 2t}{8} - 2\sqrt{t} - \int_0^t \sin sf(s)dB(s).$$

در جدول 1 مقادیر دقیق و تقریبی برای حل این معادله با روشهای سری چندجمله‌ای اولیر و توافقي بلاک-پالس راه‌های شده است. همچنین نمودارهای جواب دقیق و تقریبی برای این مقادیر $m = 12, n = 6$ و $m = 0, n = 3$ در شکل‌های 1 و 2 ارائه شده است.

<table>
<thead>
<tr>
<th>$m = 12, n = 6$</th>
<th>$m = 0, n = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>832</td>
</tr>
<tr>
<td>جواب بلاک‌پالس</td>
<td>832</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>832</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>650</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>182</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>423</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>321</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>255</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>223</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>133</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>100</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>75</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>50</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>25</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>10</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>5</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>2</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>1</td>
</tr>
<tr>
<td>روشنی‌های اویلر</td>
<td>0</td>
</tr>
</tbody>
</table>
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای‌های اویلر.

شکل ۱. نمودار جواب دقیق و تقریبی برای مثال ۱

شکل ۲. نمودار جواب دقیق و تقریبی برای مثال ۲

مثال ۱. معادله انتگرال ولترا تصادفی منفرد ضعیف زیر را در نظر می‌گیریم:

\[f(t) = \frac{1}{24} - \int_{0}^{t} \frac{1}{\sqrt{t-s}} f(s) ds - \int_{0}^{t} (s+4)\sqrt{\cos f(s)} dB(s), \quad t \in [0,1]. \]

که جواب دقیق این مسئله بدین صورت است:

\[f(t) = \frac{1}{24} \exp(-2\sqrt{t} - \frac{1}{2}(t^2 + 8t + 14)\sin t - (t+4)\cos t + 4 - \int_{0}^{t} (s+4)\sqrt{\cos s} dB(s)). \]

در جدول ۲ جواب دقیق و تقریبی برای حل این معادله با دو روش سری جندجمله‌ای اویلر و توابع بلاک-پالس برای مقادیر ۳ و ۶ ارائه شده است. همچنین نمودارهای جواب دقیق و تقریبی برای این مقادیر بین m = 12, n = 6 و m = 6, n = 6 در شکل‌های ۲ و ۴ ارائه شده است.
جدول ۲ جواب دقیق و جواب تقریبی مثال ۲

<table>
<thead>
<tr>
<th>m=۶، n=۳</th>
<th>m=۱۲، n=۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>روشن اولر</td>
<td>روشن اولر</td>
</tr>
<tr>
<td>جواب دقیق</td>
<td>جواب دقیق</td>
</tr>
<tr>
<td>پالس</td>
<td>پالس</td>
</tr>
<tr>
<td>نقطه</td>
<td>نقطه</td>
</tr>
<tr>
<td>روش بلاک</td>
<td>روش بلاک</td>
</tr>
</tbody>
</table>

شرح: با استفاده از روش اولر و روش پالس، جواب دقیق و تقریبی مشخص می‌گردد.

شکل ۲ نمودار جواب دقیق و تقریبی برای مثال ۲

متغیر: \(m = 6, n = 6 \)

\\(f(t) = \frac{1}{48} - \int_0^t \frac{1}{\sqrt{t-s}} f(s) ds - \int_0^t 2t \cos sf(s) dB(s), \quad t \in [0,1], \)
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای‌های اویلر

که جواب دقیق این مسئله بدينصورت است:

\[f(t) = \frac{1}{48} \exp(-2\sqrt{t} - t^3) - \frac{1}{2} t \sin 2t - \int_0^t 2t \cos s dB(s). \]

در جدول 3 جواب دقیق و جواب تقریبی برای حل این معادله با دو روش سری چندجمله‌ای اویلر و توابع بلاک-پالس برای مقادیر \(m = 12, n = 6 \) و \(m = 6, n = 3 \) ارائه شده است. همچنین نمودارهای جواب دقیق و تقریبی به‌این‌را مقدار \(m, n \) در شکل‌های 5 و 6 ارده شده است.

جدول 3. جواب دقیق و جواب تقریبی مثال 3

<table>
<thead>
<tr>
<th>(m=3, n=3)</th>
<th>(m=12, n=6)</th>
<th>(m=6, n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نتایج</td>
<td>جواب دقیق</td>
<td>روشه‌ای اویلر</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>0</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>0.2</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>0.3</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>0.4</td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td>0.5</td>
<td>0.23</td>
<td>0.3</td>
</tr>
<tr>
<td>0.6</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>0.7</td>
<td>0.27</td>
<td>0.36</td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
<td>0.39</td>
</tr>
<tr>
<td>0.9</td>
<td>0.31</td>
<td>0.42</td>
</tr>
</tbody>
</table>

شکل 5. نمودار جواب دقیق و تقریبی برای مثال 3

مثال 4. معادله انتگرال ولترا تصادفی منفرد ضعیف زیر را در نظر بگیریم:

\[f(t) = \frac{1}{12} - \int_0^t \frac{1}{\sqrt{t-s}} f(s) ds - \int_0^t e^s \sin s dB(s), \quad t \in [0, 1]. \]

که جواب دقیق این مسئله بدينصورت است:

\[f(t) = \frac{1}{12} \exp(-2\sqrt{t} - t^3) - \frac{1}{4} t e^{2t} + \frac{1}{8} e^{2t} \sin 2t - \int_0^t e^s \sin s dB(s). \]
شکل ۱. نمودار جواب دقیق و تقریبی برای مثال $m = 12$, $n = 6$.

در جدول ۴ جواب دقیق و جواب تقریبی برای حل این معادله با دو روش سری به روش اولر و توابع بلاک-پالس بهره‌برداری شده است. همچنین نمودارهای جواب دقیق و تقریبی برای $m = 6$, $n = 3$ در شکل‌های ۷ و ۸ ارائه شده است.

جدول ۴. جواب دقیق و جواب تقریبی مثل $m = 6$, $n = 3$

<table>
<thead>
<tr>
<th>$m = 6$, $n = 3$</th>
<th>$m = 12$, $n = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش اولر</td>
<td>روشهای بلاک-پالس</td>
</tr>
<tr>
<td>۰.۰۴</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۰۸</td>
<td>۰.۰۴</td>
</tr>
<tr>
<td>۰.۱۲</td>
<td>۰.۰۶</td>
</tr>
<tr>
<td>۰.۱۶</td>
<td>۰.۰۸</td>
</tr>
<tr>
<td>۰.۲</td>
<td>۰.۱</td>
</tr>
<tr>
<td>۰.۲۴</td>
<td>۰.۱۲</td>
</tr>
<tr>
<td>۰.۲۸</td>
<td>۰.۱۴</td>
</tr>
<tr>
<td>۰.۳۲</td>
<td>۰.۱۶</td>
</tr>
<tr>
<td>۰.۳۶</td>
<td>۰.۱۸</td>
</tr>
</tbody>
</table>

شکل ۲. نمودار جواب دقیق و تقریبی برای مثال $m = 6$, $n = 3$.

[DOI: 10.29252/mmr.4.1.91]
حل عددی معادلات انتگرال ولترا تصادفی منفرد ضعیف با استفاده از روش ماتریس عملیاتی چندجمله ای اویلر

نتیجه گیری

از آن جاکه حل تحلیلی سیبایی از معادلات انتگرال تصادفی غیرممکن و یا سیبای پیچیده است، از روش های عددی برای حل آن ها استفاده می شود. ما در این مقاله معادلات انتگرال تصادفی منفرد ضعیف را با استفاده از روش ماتریس عملیاتی سری قطع شده چندجمله ای اویلر حل کردیم. نتایج عددی بدست آمده از این روش را با روش توابع بلاک-پالس مقایسه کردهایم. نتایج ارائه شده گویای کارایی و دقت این روش نسبت به روش توابع بلاک-پالس است.

تشکر و قدردانی

از داوران محترم مقاله که نظرات ارزشمندی آنها موجب بهبود مقاله شد و همچنین از سردبیر مجله و اعضای هیئت تحریریه قدردانی می‌شود.

منابع

