چکیده

در این مقاله یک روش عددی بر مبنای تفاضلات متناهی برای حل معادله انتگرال-دیفرانسیل با مشتقات جزئی با هستهٔ منفرد ارائه شده است. ابتدا یک کمپیوتر عددی برای حل معادلهٔ حضور کرک-نیکلسون با شرایط داده شده ارائه وبسیگنی انتگرال منفرد را برای حل این معادله به کار می‌رود. در ادامه برای نشان دادن کارایی روش بینان شده با مقایسه جواب تقریبی و دقیق با روش مبتنی‌نگی مکمکی بهره‌مندی به روش ارائه شده از دقت و کارایی لازم برخوردار است. در ادامه شکل تقریبی نیز رسم شده است. سرعت بالای محاسبات، بهبود در بهسنت، و اطمینان از داشتن جواب تقریبی به‌دنبال انتخاب پایداری از یک روش و استفاده کردن دیفرانسیل و محدود بوده است. در آن روش تفاوت هر دوی متغیر به‌صورت تقریب‌برداری می‌باشد. سپس تابع جهش به‌وسیله تقریب‌برداری متغیرهای تابعی انتخاب می‌گردد و در نتیجه هدف‌گذاری برای جهش دوی تابع مجهول مشخص می‌شود. از روش تفاضلات متناهی برای حل مسائل مختلف ریاضی و فیزیکی از جمله در جریان سیال، چهاربازار پتانسیل الکترومغناطیسی، ناشی‌اش انتقال حرارت، لایه مزی خلی و انتقال جرم می‌توان بهره برد [11]. [3] محققان بسیار

روش تفاضلات متناهی برای حل معادله انتگرال-دیفرانسیل با مشتقات جزئی

مقدمه

پیداکردن طبیعی گوناگونی همانند حرارت، موج و حرکت سیالات کاربرد فراوانی در مدل کردن معادلات دیفرانسیل و معادله انتگرال-دیفرانسیل با مشتقات جزئی دارند. به‌دلیل پیچیدگی و گستردگی این نوع معادلات، تعداد روش‌های مرسوم و بر استفاده محدود بوده است و تنها روش‌های تحلیلی "روش سری فوریه" با "روش مشخصه" به اصلی ترین آزاد در حل راه‌های مشخص از معادلات دیفرانسیل با مشتقات جزئی تبدیل شده است.

از آن جاک روش تفاضلات متناهی روى دانه‌های اهمیت به‌خوبی کار می‌کند. ایده اصلی این مقاله به‌پایه استفاده از آن جاک روش تفاضلات متناهی روى دانه‌های اهمیت به‌خوبی کار می‌کند. ایده اصلی این مقاله به‌پایه استفاده از آن جاک روش است. برای این منظور ابتدا دانه‌های بپوشینه مشتمل بر گسترش‌های نموده، سپس تابع مجهول با مشتقات آن وجود روش جزئی منفرد ارائه شده که بر اساس معادله دیفرانسیل را به‌کمک روش جزئی گری به‌صورت ساده تبدیل می‌کند. سپس تابع مجهول به‌وسیله تعداد مشتقات زایی پایه‌ای با ضرایب مجهول تقریب می‌گردد. پس از تبدیل به دستگاه ساده‌تری و حداً آن ضرایب مجهول و در نتیجه خود تابع مجهول مشخص می‌شود.

برای حل معادلات انگرال و معادلات دیفرانسیل از روش تفاضلات منتاهی استفاده کرده‌اند اند انکیسون (1)، لیکی (2)، دیوئل (3) و عوپانی در (4). در این مقاله از روش تفاضلات منتاهی برای حل معادلات انگرال دیفرانسیل با مشتقات جزیی استفاده شده است. تحقیقات فرآیند بر روی های مختلط برای حل معادلات انگرال دیفرانسیل صورت گرفته است. برای مثال مؤمنی در (5) برای معادله انگرال دیفرانسیل یکتایی و وجود جواب را در حالت محیط و عمومی به دست آورد. همچنین روش‌های عده‌ای مختلف برای تقریب زدن این معادلات ارائه شده است. برای نمونه، با بابلانی و سقیمی در (6) با استفاده از توانایی پلاک-پالس، در (7) با استفاده از روش گلبرگین طیفی برنیتاین هم‌جمله مسئله را حل کرده‌اند. همچنین عوپانی در (8)-(12) با استفاده از موجک‌های جواب برای معادله انگرال و معادله انگرال دیفرانسیل به دست آورده‌اند.

در این مقاله معادله انگرال دیفرانسیل الکترونفیوزی با هسته متفاوت

\[
\frac{\partial w(x,t)}{\partial t} + \lambda \frac{\partial^2 w(x,t)}{\partial x^2} - \beta \frac{\partial^3 w(x,t)}{\partial x^2 \partial t} = \int_0^t K(t-s)w(x,s)ds + F(t,x),
\]

(1)

را برای \(t \) برای (0,1) و \(x \) برای (0,1) و شرط اولیه \(w(x,0) = g(x) \) و شرط اولیه \(w(0,t) = p(t), \quad w(1,t) = q(t) \) در نظر می‌گیریم که در آن \(\lambda \) و \(\beta \) ثابت‌های مشتبت و توابع و \(p \), \(g \), \(F \) توابع پیوسته و معلوم است. که هسته منفرد ضعیف معادله انگرال، به دست آمده خورشیدی

\[K(t-s) = (t-s)^\alpha, \quad 0 < \alpha < 1. \]

جحل عددی مستند

در این بخش، یک الگورتیم عددی برای حل معادله (1) با شرایط داده شده را ارائه می‌دهیم و با استفاده از روش تفاضلات منتاهی (براساس طرح کرکن-نیکلسون) انتگرال منفرد را گسترش سازی و سپس اقدام به حل مستند می‌کنیم.

1. پیاده‌سازی روش تفاضلات منتاهی

با استفاده از فرمول‌های سطح‌های دو نقطه‌ای عملکردی و دو نقطه‌ای عملکردی (2) و (3) گسترش‌سازی می‌گردد:

\[
\frac{w_i^{k+1} - w_i^k}{\tau} + \theta \left(\lambda \frac{w_i^{k+1} - w_{i-1}^k}{2h} - \beta \frac{w_i^{k+1} - 2w_{i+1}^k + w_{i-1}^k}{h^2} \right) (1-\theta) \left(\lambda \frac{w_i^k - w_{i-1}^k}{2h} - \beta \frac{w_i^k - 2w_i^k + w_{i+1}^k}{h^2} \right) = \int_{t_i}^{t_{i+1}} (t_{i+1} - s)^{-\alpha} w(x,s)ds + F(x,t_{i+1})
\]

(2)

با استفاده از (3) شکل تفاضلات منتاهی صریح برای معادله (1) (4) حاصل می‌شود:

\[
\frac{w_i^{k+1} - w_i^k}{\tau} + \theta \left(\lambda \frac{w_i^{k+1} - w_{i-1}^k}{2h} - \beta \frac{w_i^{k+1} - 2w_{i+1}^k + w_{i-1}^k}{h^2} \right) (1-\theta) \left(\lambda \frac{w_i^k - w_{i-1}^k}{2h} - \beta \frac{w_i^k - 2w_i^k + w_{i+1}^k}{h^2} \right) = \int_{t_i}^{t_{i+1}} (t_{i+1} - s)^{-\alpha} w(x,s)ds + F(x,t_{i+1})
\]

(3)

از طرفی برای قسمت انتگرال سمت راست معادله اخیر مطابق رابطه (4) داریم:

\[
\int_{t_i}^{t_{i+1}} (t_{i+1} - s)^{-\alpha} w(x,s)ds \approx \sum_{j=0}^k w(x_i,t_{k-j+1}) \int_{t_{i+j}}^{t_{i+1}} s^{-\alpha} ds = \frac{t_{i+1} - t_i}{\Gamma(1-\alpha)} \sum_{j=0}^k t_j w(x_i,t_{k-j+1}).
\]

(4)
روش تفاضلات متناهی برای حل معادله انتگرال-دیفرانسیل با مشتقات جزئی

\[l_j = \left((j+1)^{-\alpha} - j^{-\alpha} \right) \]

با جایگذاری (7) در رابطه (3) و \(\beta = \frac{1}{2} \) با انجام فراکسیون ساده‌سازی می‌یابیم

\[
\begin{align*}
(-r \beta + \frac{1}{2} r \lambda h) w^{k+1}_{ij} + \left(1 + 2 \beta - \frac{r^{2-\alpha}}{1-\alpha} \right) w^{k+1}_{ij} + (-r \beta - \frac{1}{2} r \lambda h) w^{k+1}_{ij} \\
= \left(r \beta - \frac{1}{2} r \lambda h \right) w^{k}_{ij} + (1 - 2 \beta) w^{k}_{ij} + \left(r \beta + \frac{1}{2} r \lambda h \right) w^{k}_{ij} + \frac{r^{2-\alpha}}{1-\alpha} \sum_{j=1}^{k} l_j w^{k-j+1}_{ij} + \tau F(x_i, t_{k+1}),
\end{align*}
\]

\(r = \frac{\tau}{2 h^2} \), \(\tau^k = w(x_i, t_k) \)

با استفاده از رابطه (5) برای \(k = 0,1,...,N-1 \) و \(i = 1,2,...,M-1 \)

\[AW^{k+1} = BW^{k} + G^{k+1}, \]

\[A = \begin{pmatrix}
\mu_2 & \mu_3 & 0 & 0 & 0 & ... & 0 & 0 & 0 \\
\mu_1 & \mu_2 & \mu_3 & 0 & 0 & ... & 0 & 0 & 0 \\
0 & \mu_1 & \mu_2 & \mu_3 & 0 & ... & 0 & 0 & 0 \\
0 & 0 & 0 & ... & 0 & \mu_1 & \mu_2 & \mu_3 & 0 \\
0 & 0 & 0 & ... & 0 & 0 & \mu_1 & \mu_2 & \mu_3
\end{pmatrix}, \quad B = \begin{pmatrix}
\eta_2 & \eta_3 & 0 & 0 & 0 & ... & 0 & 0 & 0 \\
\eta_1 & \eta_2 & \eta_3 & 0 & 0 & ... & 0 & 0 & 0 \\
0 & \eta_1 & \eta_2 & \eta_3 & 0 & ... & 0 & 0 & 0 \\
0 & 0 & 0 & ... & 0 & \eta_1 & \eta_2 & \eta_3 & 0 \\
0 & 0 & 0 & ... & 0 & 0 & \eta_1 & \eta_2
\end{pmatrix}, \quad
\begin{pmatrix}
\mu_2 & \mu_3 & 0 & 0 & 0 & ... & 0 & 0 & 0 \\
\mu_1 & \mu_2 & \mu_3 & 0 & 0 & ... & 0 & 0 & 0 \\
0 & \mu_1 & \mu_2 & \mu_3 & 0 & ... & 0 & 0 & 0 \\
0 & 0 & 0 & ... & 0 & \mu_1 & \mu_2 & \mu_3 & 0 \\
0 & 0 & 0 & ... & 0 & 0 & \mu_1 & \mu_2 & \mu_3
\end{pmatrix},
\]

\[W^{k+1} = \left(w_1^{k+1}, w_2^{k+1}, ..., w_{M-2}^{k+1}, w_{M-1}^{k+1} \right)^T, \]

\[W^{k} = \left(w_1^{k}, w_2^{k}, ..., w_{M-2}^{k}, w_{M-1}^{k} \right)^T, \]

\[G^{k+1} = \begin{pmatrix}
-\mu_1 p(t_{k+1}) + \frac{r^{2-\alpha}}{1-\alpha} \sum_{j=1}^{k} l_j w^{k-j+1}_{kj} + \tau F(x_i, t_{k+1}) + \eta_1 p(t_k) \\
\frac{r^{2-\alpha}}{1-\alpha} \sum_{j=1}^{k} l_j w^{k-j+1}_{2j} + \tau F(x_2, t_{k+1}) \\
\frac{r^{2-\alpha}}{1-\alpha} \sum_{j=1}^{k} l_j w^{k-j+1}_{3j} + \tau F(x_3, t_{k+1}) \\
\vdots \\
\frac{r^{2-\alpha}}{1-\alpha} \sum_{j=1}^{k} l_j w^{k-j+1}_{M-2j} + \tau F(x_{M-2}, t_{k+1}) \\
-\mu_3 q(t_{k+1}) + \frac{r^{2-\alpha}}{1-\alpha} \sum_{j=1}^{k} l_j w^{k-j+1}_{M-1j} + \tau F(x_{M-1}, t_{k+1}) + \eta_3 q(t_k)
\end{pmatrix} \]

است که
بنابراین دستگاه خطی (6) در دامنه

\[Q = \{ (x,t) | 0 \leq x \leq 1, 0 \leq t \leq 1 \}, \]

و نقاط گرهای \((x_i, t_k)\).

جواب تقریبی را به وجود می‌آورد.

بردار اولیه \(W(0, x)\) را به دست آورد، داریم

\[W^0 = (g(x_1), g(x_2), \ldots, g(x_{M-1}))^T. \]

تحلیل خطای

یکی از مهم‌ترین بخش‌ها در کارهای عددی مشخصا کارا و قابل اثبات و استناد بودن آن است. بنابراین در این روش به منظور اطمینان بخشی با پایان بکام و قضیه پایداری روش را اثبات می‌کنیم.

\[\gamma_s = \mu_2 + 2\sqrt{\mu_2\mu_3} \cos\left(\frac{s\pi}{M}\right), \quad s = 1, 2, \ldots, M - 1. \]

قضیه 2. شرط پایداری در طراحی آن است که شرط زیر برقرار باشد

\[|\mu_2 + 2\sqrt{\mu_2\mu_3} \cos\left(\frac{s\pi}{M}\right)| > 1 \]

اثبات. ابتدا نشان می‌دهیم که ماتریس \(A\) قطری است. پیوسته این منظور نشان می‌دهیم که

\[\mu_2 > \mu_1 + \mu_3, \]

با جایگزینی مقدار \(\mu_1\) و \(\mu_3\) و بعد از ساده‌سازی داریم:

\[1 + 4r\beta > (1 + 4r\beta)(1 - \alpha) > r^{2 - \alpha}, \]

\[\Rightarrow (1 + 4r\beta)^2 > \tau, \]

هم چنین، داریم.
روش تفاضلات متناهی برای حل معادله انتگرال-دیفرانسیل با شرایط جزئی

$$1 + 4r\beta > (1 + 4r\beta)^2 > \tau,$$
$$\Rightarrow 1 + 4r\beta > 2h^2 > \tau,$$
$$\Rightarrow (1 - \tau)h^2 > -2r\beta,$$

که به وضوح برقرار است، بنابراین ماتریس A قطری اکید است و در نتیجه وارون باید است. با توجه به معادله (5) دریم:

$$W^{k+1} = A^{-1}(BW^k + G^{k+1}).$$

اگر $i = 1, 2, \ldots, M - 1$، بنابراین طرح تفاضلی (ی) ماتریس A^{-1} است. بنابراین خطا در رابطه (5) به ویژه جایگاه h اگر باشد A^{-1} از یک بیضی نیست. از طرفی طبق (6) مقادیر ویژه ماتریس A بهینه صورت است:

$$\gamma_s = \mu_2 + 2\sqrt{\mu_1 \mu_3} \cos \left(\frac{s \pi}{M} \right), \quad s = 1, 2, \ldots, M - 1.$$
الگوریتم

• ابتدا گسسته سازی زمانی و مکانی را انجام می‌دهیم.
• انگرال منفرد را گسسته سازی می‌کنیم.
• فرم ماتریسی مسئله را به دست می‌آوریم.
• با حل دسگاه حاصل، جواب تقیبی مسئله را به دست می‌آوریم.

در ادامه برای نشان‌دادن کارایی روش‌بیان‌شده، به دست آمده‌را با روش اسلاین مکعبی (CBSM) نیز مقایسه کرده‌ایم.

مثال 1. معادله‌انگرال-دیفرانسیل همفرت-تفویضی زیر را در نظر بگیرید:

\[
\frac{\partial w(x,t)}{\partial t} + \lambda \frac{\partial w(x,t)}{\partial x} - \beta \frac{\partial^2 w(x,t)}{\partial x^2} = \int_{0}^{t} (t-s) \frac{1}{2} w(x,s) ds + F(x,t), \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1,
\]

که در آن \(\lambda = 1 \) و \(\beta = 1 \) و شرایط اولیه و مرزی به صورت:

\[
w(x,0) = 2\sin^2(x), \quad w(0,t) = 0, \quad w(1,t) = 2(1+t)\sin^2(1), \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1.
\]

است. جواب دقیق مسئله بدین صورت است:

\[
w(x,t) = 2(t+1)\sin^2(x).
\]

نتایج عددی مربوط به تقسیمات زمانی مختلف در جدول زیر نمایش داده شده است. همچنین به منظور نشان دادن دقیق روش ارائه شده، نمودارهای خطاهای آن‌ها نیز رسم شده است.

جدول 1. مقایسه بین خطای روش‌ها با ارزیابی مقدار مختلف

<table>
<thead>
<tr>
<th>(M)</th>
<th>(L_2) FDM</th>
<th>(L_2) CBSM</th>
<th>(L_2) CBSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.552</td>
<td>0.936</td>
<td>0.940</td>
</tr>
<tr>
<td>5</td>
<td>0.400</td>
<td>0.848</td>
<td>0.971</td>
</tr>
</tbody>
</table>

شکل 1. مسئله انگرال-دیفرانسیل همفرت-تفویضی زیر را در نظر بگیرید:

\[M = 20 \]

1. Cubic B-Spline Method
روش تفاضلات متناهی برای حل معادله انتگرال-دیفرانسیل با مقدار درجه‌بندی

\[
\frac{\partial w(x,t)}{\partial t} + \lambda \frac{\partial w(x,t)}{\partial x} - \beta \frac{\partial^2 w(x,t)}{\partial x^2} = \int_0^t (t-s)^{1/3} w(x,s) \, ds + F(x,t), \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1
\]

که در آن \(\lambda = 1, \beta = 2 \).

\begin{align*}
 w(x,0) &= (x^2 + x + 1), \quad w(0,t) = (t+1)^2, \quad w(1,t) = 3(t+1)^2, \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1.
\end{align*}

جواب دقیق مسئله بهینه‌سازی آست:

\[
w(x,t) = (t+1)^2 (x^2 + x + 1).
\]

نتایج عددی مربوط به تقسیمات زمانی مختلف در جدول ۲ نمایش داده شده است و برای نشان دادن تفاوت و مشخص کردن صحیح بودن روش در حل معادله با مشتقات جزئی، از روش‌های

<table>
<thead>
<tr>
<th>(M)</th>
<th>(L_2)</th>
<th>(L_\infty)</th>
<th>(L_2)</th>
<th>(L_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>FDM</td>
<td>CBSM</td>
<td>FDM</td>
<td>CBSM</td>
</tr>
<tr>
<td>0.000094</td>
<td>0.000643</td>
<td></td>
<td>0.0724</td>
<td>0.0547</td>
</tr>
<tr>
<td>5</td>
<td>FDM</td>
<td>CBSM</td>
<td>FDM</td>
<td>CBSM</td>
</tr>
<tr>
<td>0.000094</td>
<td>0.000643</td>
<td></td>
<td>0.0724</td>
<td>0.0547</td>
</tr>
</tbody>
</table>

مثال ۲. مسئله انتگرال-دیفرانسیل همرفت-فیزیکی زیر را در نظر بگیرید:

\[
\frac{\partial w(x,t)}{\partial t} + \lambda \frac{\partial w(x,t)}{\partial x} - \beta \frac{\partial^2 w(x,t)}{\partial x^2} = \int_0^t (t-s)^{1/3} w(x,s) \, ds + F(x,t), \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1
\]

که در آن \(\lambda = 1, \beta = 2 \).

\begin{align*}
 w(x,0) &= x, \quad w(0,t) = 0, \quad w(1,t) = e^{2t} (t+1), \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1.
\end{align*}

جواب دقیق مسئله بهینه‌سازی آست:

\[
w(x,t) = e^{2t} (tx+1)x.
\]

شکل ۲. نمودار خطای مزایای \(M = 20 \) برای مشخصات مختلف مسئله و مقدار خطای بهای مزایای \(M = 50 \).

\[\text{DOR: 20.1001.1.25882546.1399.6.1.12.1} \]

[Downloaded from mmm.khu.ac.ir on 2021-12-08]
نتایج عددی مربوط به تقسیمات زمانی مختلف در جدول ۳ نمایش داده شده است. همچنین به منظور نشان دادن دقت روش ارائه شده، نمودارهای خطاهای آنها نیز رسم شده است.

جدول ۳. مقایسه بین خطای روش‌های متفاوت مقدار مختلف

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>۲۰</td>
</tr>
<tr>
<td>۵۰</td>
</tr>
</tbody>
</table>

شکل ۳. نمودار خطای به ازای $M = ۵۰$. $M = ۵۰$ نمودار خطای به ازای $M = ۲۰$.

نتیجه‌گیری
در این مقاله، یک روش عددی براساس روش تفاضلات منتاوی برای حل مسئله انتگرال دیفرانسیل با مشتقات جزئی و هسته منفرد به‌کار برده شد. از مثال‌های ارائه شده می‌توان نتیجه گرفت که روش عددی ارائه شده دارای دقت و کارایی مطلوب برای حل این مسئله است.

سپاس گزاری
اين پژوهش با حمایت مالی دانشگاه زابل (شماره گرنت: 17-9718-GR) انجام شده است. بدين و سپه欠缺 مرئی دقیقاند و تشكر خواهان را از معاونت پژوهش و فناوری دانشگاه زابل اعلام مي كنيم.

منابع