رادیکال هونکه‌ای در توبوس

نویسنده مسئول: amadanshekaf@semnan.ac.ir

1. Separated

چکیده

یکی از مفاهیم مهم در نظریه نوسه‌ها، توبولوژی لاور-تیبری (تیبری) است. یک رده از توبولوژی‌های لاور-تیبری

\[\text{Act-S} \]

متغییر تا کنش‌های راست روی تکواره‌های

\[S \]

توبولوژی ایدالی است که به صورتی مشخص به توبولوژی‌های لاور-تیبری نوشته‌شده در \[[12] \] معرفی شده است. در این مقاله قصد داریم منشئة سازی‌های با نهایت بسیار گونه توبولوژی‌ها را ارائه دهیم. در ادامه با استفاده از این توبولوژی‌ها، رادیکال هونکه روش‌های سازی‌بندی‌های بهبودیابنده را بررسی می‌کنیم.

واژه‌های کلیدی: \[S \]-کنش، عملکرد بستاری ایدالی، (پیش)رادیکال هونکه، توبولوژی ایدالی.

مقدمه و پیش‌نیازها

\[\text{Act-S} \]

مشاهده شده است که تعدادی از رسته‌های مشهور مستقل از کنش‌های جداسازه‌ای روی یک تکواره، در حیطه‌های خاصی از رسته کنش‌های \[I \] جداسازه‌های هستند. از این منظر می‌تواند در انجا توبولوژی‌های ایدالی و تکواره‌های \[Act-S \]

مطالعه کمی در حیطه خاصی، می‌خواهیم \[I \] در تکواره‌های \(S = G \) نشان داده شده است که برای کنش‌های ایدالی نوع تکواره‌های \([5]\) \(\text{Act-S} \) هم‌ارگ سالم به‌عنوان یک \([1] \)-کنش چین‌پایش. در اینچه‌که قصد داریم رابطه‌بین \(\text{Act-S} \) و \(\text{Act-S} \) را پیمپدیم.

\[1 \] Separated

amadanshekaf@semnan.ac.ir
یک گروه G یک ایدئال I ایدئالی دوطرفه از S است را بدست می‌آموزد. در این مورد، برای یک ایدئال J بنا به Sep، توزیعی رادیکالی از رسته $Act-S$ S روندی در زیر شناخته می‌شود. مشکل از هم‌ارزی $Act-S$ کنش‌های I و J، است. است. در نهایت، همچنین نشان می‌دهم این رادیکال، یک ناب با بهانه یک دقیقه رادیکال مورتی روی S است. در نهایت، عاملگر بستاری مانند B را ساخته و نشان می‌دهم I، به نفع نسبت به این عملگر بستاری نیز هستند.

در این مقاله، نمادگذاری‌ها و مقایسه زیر را استفاده می‌کنیم که تعدادی از آنها را در مراجعه [14] پدیداری می‌کنیم. یک $\mu(a,s) = \mu(a) \times s$ $A \times s \rightarrow A$ در مورد هر موردی و $s \in S$، است. در این مورد، f $A \rightarrow B$ به‌صورت $s \in S$ تابعی و $\mu(a) \in \mathcal{A}_a$ همراه با نگاشت \mathcal{A}_a. در این مورد، $f(a) = f(a) \times s$ برای هر $f(a) \in A$ و $s \in S$، نیازمند می‌شود. به‌طور کلی، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی هم‌ارزی بین هر دو $\mathcal{A}_a \times \mathcal{A}_b$ هستند. در این مورد، \mathcal{A}_a و \mathcal{A}_b مجموعه تابعی Hestrی بیشتری در I بیشتری در I بیشتری در I بیشتری در I B از A, B و C هرگاه برای همه زیرکنش‌های $Act-S$ می‌نویم $B \subseteq C_A(B)$.
برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) \subseteq f^{-1}(C_F(U))$, $f : E \to F$ از U برای هر زیرکنش U برای هر زیرکنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

متن در S خواندنی است با زیرکنش K و A به این کنش K.

مانند $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

گوییم $f : E \to F$ در شرطی (1) و (2) صدق کند. هم چنین f باید عملکردهای B را حفظ کنش S کنند، به طوری که $K = \{s \in S \mid t \in I, st \in K\}$.

داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

مندرکی شویم C یک عملکردهای B است که این کنش، به طوری که $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

در عملکردهای A داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

مندرکی شویم C یک عملکردهای B است که این کنش، به طوری که $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

در عملکردهای A داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

مندرکی شویم C یک عملکردهای B است که این کنش، به طوری که $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

در عملکردهای A داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

مندرکی شویم C یک عملکردهای B است که این کنش، به طوری که $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

در عملکردهای A داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

مندرکی شویم C یک عملکردهای B است که این کنش، به طوری که $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

در عملکردهای A داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.

مندرکی شویم C یک عملکردهای B است که این کنش، به طوری که $C(A(B)) = C(A(B))$. داشته باشیم $B \in A$.

در عملکردهای A داده شده باشد. $f : E \to F$ از U.

برای هر هاگست حاصل کنش $C_E(f^{-1}(U)) = f^{-1}(C_F(U))$, $f : E \to F$ از U.

اصل (M) از U.
در این بخش، قصد داریم f-یافه‌ها را در نظر بگیریم. فرض می‌کنیم که S، یک ایندیکس‌دار به دو ایدال دوایر A و B محدود باشد. به این صورت که f، یک تابع $f : S \to A$ می‌باشد. بررسی می‌کنیم که S-گروهی به شکل $S = S(G)$ می‌باشد.

تعریف 2. فرض می‌کنیم I ایدالی راست از S است. S-گروهباید I-گروه راست حاضر باشد. $f : I \to A$ مجموعه ای باشد که $a \in A$ موجود باشد به طوریکه $f(a) = \lambda_a$. عضوی که $f(a) = \lambda_a$ باشد، مانندی $a \in A$ می‌باشد.

تعریف 3. فرض می‌کنیم I ایدالی دوایری از S است. در این صورت، S-گروهباید I-گروه حاضر باشد. $f : I \to A$ می‌باشد.

نتایج اولیه است.

قضیه 4. مشخصه‌سازی‌هایی مهیجی از f-یافه‌ها به دست می‌آید.

قضیه 2. فرض می‌کنیم I ایدالی دوایری از S است. برای A، احکام زیر می‌باشد.

- $f : I \to A$ به طوریکه $f(a) = \lambda_a$ باشد.
- $f : I \to A$ به طوریکه $f(a) = \lambda_a$ باشد.

نتایج اولیه است.

- $f : I \to A$ به طوریکه $f(a) = \lambda_a$ باشد.
- $f : I \to A$ به طوریکه $f(a) = \lambda_a$ باشد.

نتایج اولیه است.
رایگان همکاری در توپوس

هدف: سطح حافظه کنش یک گروه S موجود است به قسمی

(ب) $f : I \rightarrow A$ مفروض، طبق (ب) نگاشت حافظه کنش یک‌تایی

که $\pi = f$ آکتوکن با در نظر گرفتن (1)، داریم $\lambda_f = \lambda_f$.

(الف) به عنوان یک گروه S سطحی، اگر برای هر $a, b \in A$

$\lambda_f(a) = \lambda_f(b)$ باشد، هر چند آن‌ها که طبق یک‌تایی ریخته‌ای $\lambda_a : I \rightarrow A$

و بهترین با ضایعه‌های $\lambda_a(b)$ و $\lambda_a(s) = bs$ از A

اگر λ_f با طبق (ب)، $a = f(1) = f(1) = b$

با توجه به (الف) و (ب) این که $f : cI \rightarrow A$ کامل است.

این که $f : I \rightarrow A$ کامل است، طبق (الف) و (ب) نتیجه می‌شود که A

برای یک $f : cI \rightarrow A$ کامل است.

در اینجا نتیجه‌های مانند محک برخورداری از رای (الف) و (ب) با پیان‌های این کمیت

نتیجه ۱. فرض می‌کنیم I ایدئالی دوطرفه از تکاره S است، برای A

الف) λ_f-

(الف) $\lambda_f(a) = \lambda_f(b)$

بنابراین پیامدهای دوطرفه $f : B \rightarrow A$ به یک کنش دودی و هر نگاشت حافظه کنش

ف) برای هر $g : cS \rightarrow A$

حافظ کنش یک‌تایی λ_f موجود است بهطوری که $f : cI \rightarrow A$

برای هر S که $f : cS \rightarrow A$

توسعه داده شود.

اثبات. (الف) λ_f. (ب) λ_f-

برای آن‌ها I ایدئال چپی از S است، بنابراین

الف) (الف) با قرار دادن $1 = c, (b)$ دقیقاً بند (ب) از قضیه ۴ است که معادل با تعیین 1-

با S-

پرداز

از $\lambda_f : I \rightarrow A$

عمل یک گروه S بهطور یک‌تایی cI روابط

گزاره ۴. گروپ ایدئال دوطرفه I از تکاره S

به عنوان یک گروپ، بهطور یک‌تایی cI

عمل یک گروه S بهطور یک‌تایی cI

برای هر S-

ارگ‌ها است که برای هر نگاشت حافظه کنش

صفرت $f : S \rightarrow A$

با S-

(الف) به عنوان یک گروپ، عمل یک‌تایی $a \in A$

موجود باشد طوری که

1. Unique absolute retract
2. Baer-Skornjakov
اثبات: برای اثبات جهت نابدیهی، فرض کنید که اکنون، داریم A, S و بنابراین، $a = c$. اگر $f(s) = g(s)$ برای s در در نتیجه همیاهاها باشد. به عضو s در داریم. به c باشد، a ایدآل یک‌کنش‌انژکتیو‌‌ضعیف‌ است. به نگاشت‌حافظ‌کنشی‌از‌یک‌ایدآل‌دوطرفه‌‌راست‌و‌چپ‌‌داریم‌های‌ریاضی‌نشریه‌علوم‌دانشگاه‌خوارزمی،‌بهار‌1311‌(principally) weakly injective

تمام‌المناسبت‌های‌درست‌و‌کریک‌(دامنه‌ای‌یک‌کنش‌انژکتیو‌‌ضعیف‌ساخته‌شده‌از‌یک‌ایدآل‌دوطرفه‌راست‌و‌چپ‌)‌باشد.

1. (principally) weakly injective
 قضیه ۱۱. فرض کنیم \(S = G \cap I \) تکرارهای باشد که در آن \(G \) یک گروه و \(I \) ایدال دوپترفهای از \(S \) پیدا شده است و \(A \) یک گروه هفتگه باشد.

قضیه

اثبات. به‌سادگی می‌توان مشاهده کرد که برای هر ایدال دوپترفه \(I \) از \(S \), در این \(I = S \) در ابتدا \(I \) یک ایدال از \(S \) است. سپس فوراً نتیجه می‌شود که برای هر ایدال دوپترفه \(I \) از \(S \) باعث اینتیمی در اینتیمی تنها اگر هنگامی است اگر و تنها اگر بعنوان یک \(S \)-کنش باشد. اکنون تعریف ۱۰ و قضیه‌های ۲ تا ۴ از جمله این نتیجه می‌باشد.

قضیه ۱۲. فرض کنیم \(S = G \cap I \) یک تکرارهای است و هم‌مرتبه‌ای نیم‌گروهی گروهی یافته‌ای \(I \) با خاصیت

\[h : S \rightarrow I \]

را یافته باشند. در اینتیمی \(A \) در توبوس \(I \) یک \(I \)-افاق است اگر و تنها اگر در توبوس \(I \) چنین باشد. حال قضیه ۶.۳ از اینتیمی حکم را ثابت می‌کنند.

توسعه رادیکالی از یک گروه تکرارهای جدید

در این بخش، نشان می‌دهیم توبوس \(A \) در اینتیمی با به‌عنوان \(Sep(\alpha) \) تعریف‌شده رادیکالی از رسته \(A \) موجود است که رده‌ای دارای تکرارهای ساخته \(Act-I \) ای دارد. در ابتدا، از اینتیمی \(h(I) = 1 \) را اختیار کنید. در اینتیمی از توبوس \(I \) یک \(I \)-افاق است اگر و تنها اگر در توبوس \(I \) چنین باشد. حال قضیه ۶.۳ از اینتیمی حکم را ثابت می‌کنند.

\[\alpha : \text{id}_{Act-I} \rightarrow L \circ \eta : \alpha_{Act-I} = \eta \rightarrow A/\sigma_{Act-I}. \]

اثبات. یک بررسی ساده نشان می‌دهد که تکرارهای

\[\alpha : \text{id}_{Act-I} \rightarrow L \circ \eta : \alpha_{Act-I} = \eta \rightarrow A/\sigma_{Act-I}. \]

تعریف شده در قیمت‌های متریک، به رادیکالی در رسته

\[L : \text{Act-I} \rightarrow \text{Sep(\alpha)} \]

تعریف شده در قیمت‌های متریک، به رادیکالی در رسته

\[L : \text{Act-I} \rightarrow \text{Sep(\alpha)} \]

قضیه ۱۴. یک رادیکال در ایدال چپ \(S \) باشد. اکنون تعریف ۱۴ از اینتیمی حکم را ثابت می‌کنند.

قضیه ۱۳. یک رادیکال \(I \) یک ایدال چپ \(S \) باشد. اکنون تعریف ۱۳ از اینتیمی حکم را ثابت می‌کنند.

\[\eta : A \rightarrow \sigma_{Act-I} \]

همان‌طور که در اینتیمی ایدال چپ ایدال \(A \) را ایدال است. اینتیمی ایدال چپ ایدال \(A \) را ایدال است.
اگر $f : A \to B$ عملکرد باشد، $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشد. اگر $f(a) = f(b)$ باشد، $a, b \in A$ باشند. اگر $f(a) \neq f(b)$ باشد، $a, b \in A$ باشند و $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند. اگر $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند، $a, b \in A$ باشند.

اگر $f : A \to B$ عملکرد باشد، $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند. اگر $f(a) = f(b)$ باشد، $a, b \in A$ باشند. اگر $f(a) \neq f(b)$ باشد، $a, b \in A$ باشند و $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند. اگر $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند، $a, b \in A$ باشند.

اثبات: ابتدا نشان دهنده η بیش رادیکال است. برای انجام آن، گروه بکار می‌رود. اگر $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند، $a, b \in A$ باشند.

اثبات: ابتدا نشان دهنده η بیش رادیکال است. برای انجام آن، گروه بکار می‌رود. اگر $f(a), f(b) \in f(\sigma_A)$ هر دو عنصر مجموعه σ_B باشند، $a, b \in A$ باشند.
اکنون عضو دلخواهی با $a \in C^1_A$ و $b \in f^{-1}(D)$ را در نظر بگیرید. ناپ و رابطه (7), $\bar{\phi}(a/f^{-1}(D), b/f^{-1}(D)) \in r(A/f^{-1}(D))$، با $a/f^{-1}(D) \to B/D$، می‌تواند با $(a/f^{-1}(D), b/f^{-1}(D)) \in r(A/f^{-1}(D))$ و $\bar{\phi}(a/f^{-1}(D), b/f^{-1}(D)) \in r(B/D)$، در نظر بگیریم. ناپ و رابطه (8), $\bar{\phi}(a/f^{-1}(D), b/f^{-1}(D)) \in r(B/D)$، با داشته باشد.

\[
\text{A} \quad f^{-1}(C^r_B(D)) = \{a \in A| \exists d \in D; (f(a)/D, d/D) \in r(B/D)\}.
\] (A)

\[
\text{B} \quad \exists \phi \subseteq r(A) \text{ با در نظر گرفتن ناپ و رابطه (7) و (8).}
\]

\[
\text{C} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{D} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{E} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{F} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{G} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{H} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{I} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{J} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{K} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{L} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{M} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{N} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{O} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{P} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{Q} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{R} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{S} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{T} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{U} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{V} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{W} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{X} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{Y} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]

\[
\text{Z} \quad \text{به طور مشابه با اکنون، طبق (5) و (6) قانون اول ناپ و رابطه (7) و (8) را در نظر بگیریم.}
\]