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Abstract 

In this paper, Bernoulli wavelets are presented for solving (approximately) fractional 

differential equations in a large interval. Bernoulli wavelets operational matrix of fractional 

order integration is derived and utilized to reduce the fractional differential equations to 

system of algebraic equations. Numerical examples are carried out for various types of 

problems, including fractional Van der Pol and Bagley-Torvik equations for the application 

of the method. Illustrative examples are presented to demonstrate the efficiency and 

accuracy of the proposed method.  

Keywords: Bernoulli wavelet, Fractional calculus, Differential equations, Block pulse function, Van der 
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Introduction 

 In recent decades, applied scientists and engineers have realized that fractional 

differential equations (FDEs) provide a better approach to describing the complex 

phenomena in nature such as non-Brownian motion, signal processing, systems 

identification, control, viscoelastic materials and polymers [1–3]. 

   In general, it is not easy to derive the analytical solutions to most of the FDEs. 

Therefore, it is vital to develop some reliable and efficient techniques to solve FDEs. 

Numerical solution of FDEs has attracted considerable attention from many researchers. 

During the past decades, an increasing number of numerical schemes have been 

developed. These methods include fractional linear multi-step methods [4,5], the 

Adomian decomposition method [6–8], variational iteration method [9, 10], operational 

matrix method [11–22] and Homotopy analysis method [23–26]. 

Numerical solutions of the FDEs in a large interval have been investigated by some 

researchers. There are few references on the solution for fractional Van der Pol 
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equations [27, 28] and Bagley-Torvik equations [29]. In this paper we solve the two 

above noted equations. We introduce a new direct computational method to solve them. 

The method consists of using Bernoulli wavelet operational matrix of fractional order 

integration to reduce the FDEs to a set of algebraic equations. For approximating an 

arbitrary time functions the advantages of Bernoulli polynomials )(tm , 0,1,2,=m  

where 10  t  over shifted Legendre polynomials are given in [30–32]. 

   The rest of the paper is organized as follows: in section 2, basic definitions of 

fractional calculus, Bernoulli wavelets and their properties are introduced. In section 3, 

how to derive Bernoulli wavelet operational matrix of fractional order integration is 

given. Illustrative examples are given in section 4 to demonstrate the application of 

operational matrix of fractional order integration for Bernoulli wavelets. Finally, we 

present the conclusion in section 5. 

 

Preliminaries and notations 

1.  The fractional integral and derivative 

In this section, we first state some definitions and basic properties regarding 

fractional derivatives and integral. There are various definitions of fractional integration 

and differentiation, such as Grunwald-Letnikov’s definition and Riemann-Liouville’s 

definition. To solve differential equations (both classical and fractional), we need to 

specify additional conditions in order to produce a unique solution. For the case of the 

Caputo FDEs, the additional conditions are just the traditional conditions, which are 

akin to those of classical differential equations, and are therefore familiar to us. In 

contrast, for the Riemann-Liouville FDEs, the additional conditions constitute certain 

fractional derivatives (and/or integrals) of the unknown solution at the initial point 0=t

, which are functions of t . These initial conditions are not physical, furthermore, it is 

not clear how such quantities are to be measured from experiment, say, so that they can 

be appropriately assigned in an analysis. For more details see [33]. Therefore, we use 

the fractional derivatives in the Caputo sense. 

Definition 1. We define 

 1( ) ( ) 0, 0, ( ) ( )pC f t f t t f t t f t     , where p   and 
1( ) [0, )f t C  , 

 ( )( ) ( )n nC f t f t C   , where n  and  . 

Definition 2. The Riemann-Liouville fractional integral operator of order 0q , of a 

function ( )f t C , 1   ,  is defined as [34] 
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For the Riemann-Liouville fractional integral we have  
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The Riemann-Liouville fractional integral is a linear operation, namely:  

),()(=))()(( tgItfItgtfI qqq    

where   and   are constants.  

Definition 3. Caputo’s fractional derivative of order q , for the function 
1( ) nf t C ,  is 

defined as [35] 
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where 0>q  is the order of the derivative and n  is the smallest integer greater than or 

equal q . 

   For the Caputo derivative we have the following two basic properties [36]  

),(=)( tftfID qq  

and  

.
!

(0))(=)( )(
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0= i

t
ftftfDI

i
i

n

i

qq 
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                            (1) 

2.  The properties of Bernoulli wavelets 

2.1.  Wavelets and Bernoulli wavelets 

Wavelets are a family of functions constructed from dilation and translation of a single 

function called the mother wavelet. When the dilation parameter a  and the translation 

parameter b  vary continuously we have the following family of continuous wavelets as 

[37]  

0.,,    ),(||=)( 2

1

, 




aba
a

bt
atba   

If we restrict the parameters a  and b  to discrete values as kaa 

0= , kanbb 

00= , 1>0a , 

1>0b , where n  and k  are positive integers, the family of discrete wavelets are defined 

as  

),(||=)( 00
2

0, nbtaat k

k

nk   
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where )(, tnk  form a wavelet basis for )(2 L . 

Bernoulli wavelets ),,ˆ,(=)(, tmnktmn   have four arguments, 1=ˆ nn , 121,2,3,...,= kn  

k  can assume any positive integer, m  is the order for Bernoulli polynomials and t  is 

the normalized time. We define them on the interval [0,1)  as follows [38] 
1
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normality, the dilation parameter is 1)(2=  ka  and the translation parameter 

1)(2ˆ=  knb . Here, )(tm  are the well-known Bernoulli polynomials of order m  which 

can be defined by [39]  
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where mii 0,1,...,=,  are Bernoulli numbers. These numbers are a sequence of signed 

rational numbers which arise in the series expansion of trigonometric functions [40] and 

can be defined by the identity  
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   The first few Bernoulli numbers are  
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 According to [41], Bernoulli polynomials form a complete basis over the interval [0,1] . 

2.2.  Function approximation 

Suppose that [0,1])}(,),(),({ 2

1121110 Lttt
Mk 
  is the set of Bernoulli 

wavelets, 

)},(,),(,),(,),(),(,),(),({=
1120121220111110 tttttttspanY

MkkMM    

and )(tf  be an arbitrary element in [0,1]2L . Since Y  is a finite dimensional vector 

space, )(tf  has the best approximation out of Y  such as Ytf )(0
, that is  

.)()()()(  ,)( 0  tytftftfYty   
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 where T  indicates transposition, C  and )(t  are 12 1  Mk  matrices given by  
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where D  is a matrix of order MM kk 11 22    and is given by  
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 The matrix D  in Eq. (4) can be calculated by using Eq. (2) in each interval 

1,21,= kn . For example with 2=k  and 3=M , D  is the identity matrix and for 
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2=k  and 4=M  we have 
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 Therefore, TC  in Eq. (3) is given by  

.= 1DFC TT  

 

Bernoulli wavelet operational matrix of the fractional integration 

In this section, we define the Bernoulli wavelet matrix. Then, by using the Block-

Pulse operational matrix of fractional integration, we derive the Bernoulli wavelet 

operational matrix of the fractional integration. 

   Taking the collocation points as following:  
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where Mm k 1' 2=  . For example, when 2=k  and 3=M  the Bernoulli wavelet matrix 

is expressed as  
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Now, we define an m -set of Block-Pulse functions (BPFs) as  
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   We now derive the Bernoulli wavelet operational matrix of fractional integration. Let  

),(=)( )( tPtI qq                                            (8) 

 where the matrix )(qP  is called the Bernoulli wavelet operational matrix of fractional 

integration. Using Eqs. (6) and (7) we get  
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 From Eqs. (8) and (9) we have  
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Then, the Bernoulli wavelet operational matrix of fractional integration )(qP  is given by  
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 In particular, for 2=k , 3=M , 0.5=q , the Bernoulli wavelet operational matrix of 

fractional integration )(qP  is expressed as  

(0.5)
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It should be noted that the operational matrix )(qP  contains many zero entries. This 

 [
 D

O
I:

 1
0.

29
25

2/
m

m
r.

2.
1.

17
 ]

 
 [

 D
O

R
: 2

0.
10

01
.1

.2
58

82
54

6.
13

95
.2

.1
.3

.4
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
m

r.
kh

u.
ac

.ir
 o

n 
20

25
-1

1-
28

 ]
 

                             7 / 16

http://dx.doi.org/10.29252/mmr.2.1.17
https://dor.isc.ac/dor/20.1001.1.25882546.1395.2.1.3.4
https://mmr.khu.ac.ir/article-1-2575-fa.html


24                                      Vol. 2, No. 1 Spring & Summer 2016                         Mathematical Researches 
     (Sci. Kharazmi University) 

phenomena makes calculations fast. The calculation for the matrix )(qP  is carried out 

for fixed ,k M , and is used to solve fractional order as well as integer order differential 

equations. 

Illustrative examples 

 To demonstrate the effectiveness of the method, we consider some fractional 

differential equations. We use Mathematica ver. 7.0 software to solve following 

examples. 

Example 1. Consider the damped Van der Pol equation with fractional damping, which 

is governed by the studies of Juhn-Horng Chen and Wei-Ching Chen [43] as following  

2<<0  ),(=)()(1))(()( 2 qtasintxtxDtxtx q    ,                          (11) 

(0) = 0 ,

(0) = 0 ,

x

x
                                                 (12) 

 the second initial condition is for 1>q  only. The initial conditions are homogeneous, 

  is the damping parameter, a  the amplitude of periodic forcing,   denotes the 

forcing frequency and qD  the differential operator that denotes the q -th
 derivative of the 

related function with respect to t. 

Let  

),()(2 tCtxD T                                                (13) 

 by using Eqs. (1), (6), (8), (10) and (12) we have  

),(=)(=))((=)( 1)(2)(222 tFCtPCtxDItxD qTqTqq               (14) 

 and  

),(=)(=(0)(0))(=)( 1

(2)(2) tBAtBPCtxxtPCtx TT                 (15) 

 where  

].,,,[== 110

(2)

1  m

T aaaPCA  

By using Eqs. (5) and (15), we have  

),(=)()()(=

)]()()([=)]([=)]([

21

2

11

2

10

2

0

2

111100

2

1

2

tBAtbatbatba

tbatbatbatBAtx

mm

mm








 

where  

].,,,[= 2

1

2

1

2

02 maaaA  

Similarly, the input signal )( tasin   may be expanded by the Bernoulli wavelets as  

),(=)( tFtasin T                                           (16) 

 where TF  is a known constant vector. Substituting Eqs. (13)–(16) in Eq. (11), we have  
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0.=)()(

)()()()(
(2)

1)(21)(2

2

tFtPC

tFCtFCtBAtC
TT

qTqTT



  
            (17) 

 To find the solution )(tx , we first collocate Eq. (17) at the points 
M

i
t

ki
2

12
=


, 

Mi k 1,21,2,=  . These equations generate Mk 12   algebraic equations which can be 

solved  by using Newton’s iterative method. Consequently, )(tx  given in Eq. (15) can 

be calculated approximately. 

We assume that the parametric values are 0.5= 1.31,= 1.02,=  a , and solve the 

fractional damped Van der Pol for 0.5=q . It is worth noticing that the method 

introduced above can only solve Eq. (11) for [0,1)t . That is because Bernoulli 

wavelets are defined on interval [0,1) . However, the variable t  of Eq. (11) is defined on 

interval [0,4) , we should turn )(t  into )
4

(
t

  in the discrete procedure. Figures 1 and 

2 show the approximate solution obtained by our method with 3=k , 4=M  within 

interval [0,1)  and [0,4) , respectively. The numerical solution is in perfect agreement 

with the solutions of [27] and [28]. 

Example 2. Consider the Bagley-Torvik equation that governs the motion of a rigid 

plate immersed in a Newtonian fluid  

0,>   ),(=)()()( 1.5 ttftcxtxbDtxa                                    (18) 

0,=(0)=(0) xx                                        (19) 

where  

1)],()(8[=)(  tututf  

and )(tu  is the Heaviside Step function. 

   The analytical solution of Eq. (18) obtained by Pondlubny is 1)],()(8[=)(  txtxtx uu
 

[2]. 

where  

,)(
!

1)(1
)(=)( 2

1

)(

3
2

3
,

2

1

1)2(

0= 









 














 t
a

b
Et

a

c

ia
tutx i

i

i

ii

i

u  

and )(, tE   is the Mittag-Leffler function in two parameters  , : 

. 0,1,2,=   ,
)(!

)!(
=)(=)(

0=

,
)(
,

i
ijj

tji
tE

dt

d
tE

j

j
i

i
i


 





 

Integrating Eq. (18), we have  
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Figure 1. Approximate solution within interval [0,1) , for Example 4.1 

 

    
Figure 2. Approximate solution within interval [0,4) , for Example 4.1 

).(=)()((0)](0))([ 220.5 tfItxcItxbIxtxtxa                        (20) 

 Let  

).()( tCtx T                                                     (21) 

 Similarly, the input signal )(tf  may be expanded by the Bernoulli wavelet as  

).()( tFtf T                                                   (22) 

 Substituting Eqs. (19), (21) and (22) into (20), we have  

0,=)()()()( 220.5 tIFtIcCtIbCtaC TTTT   

then by using Eq. (8) we have  

0,=)()()()( (2)(2)(0.5) tPFtPcCtPbCtaC TTTT   

or  

0,=(2)(2)(0.5) PFPcCPbCaC TTTT   

then  

.][= 1(2)(0.5)(2)  cPbPaIPFC TT  
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Finding the unknown coefficient vector C ,  given in Eq. (21) can be calculated. 

   We assume that 0.5= 0.5,= 1,= cba , and solve Eq. (18) with 4=4,= Mk . Figure 3 

shows the numerical solution (on the interval [0,20) method is the same as Example 4.1) 

that is in very good agreement with the exact solution. This demonstrates the 

importance of our numerical scheme in solving nonlinear multi-order fractional 

differential equations. Also, Table 1 shows the absolute error of )(tx  for our method 

and Haar wavelet [29]. 

   
Figure 3. Numerical and exact solution within interval [0,20) , for Example 4.2 

  Table 1. Absolute error of )(tx , for Example 4.2 

t Haar wavelet [29] Bernoulli wavelet 

1 0.585974 0.124625 

2 0.77707 0.00429792 

3 0.61926 0.0414732 

4 0.184014 0.0645971 

5 0.41339 0.0347576 

6 0.966783 0.029914 

7 1.26268 0.0161954 

8 1.17045 0.00931825 

9 0.697989 0.00940264 

 

Example 3. Consider the equation  

)(2=)(2.6)(1.3)( 1.52.2 tsintxtxDtxD   

with the initial conditions  

0.=(0)=(0)=(0) xxx  

This problem was solved in [44]. Figure 4 shows the behavior of the numerical 

solution on the interval [0,10)  with 4=5,= Mk . Our result is in good agreement with 

the numerical result obtained by [43]. 

)(tx
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Figure 4. Approximate solution within interval [0,10) , for Example 4.3 

 

Conclusion 

A general formulation for the Bernoulli wavelet operational matrix of fractional 

integration has derived. This matrix is used to approximate numerical solution of FDEs. 

The advantage of this method is that it transforms the problem into algebraic matrix 

equation so that the computation is simple and it is computer oriented method. It shows 

simplicity and effectiveness of this method. The solution obtained using the suggested 

method confirems that this approach can solve the problems effectively. 
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Appendix 

Lemma 1. If  T  is a matrix with square submatrices as  

 
1 2

1 2

=
T Z

T
Z T

 
 
 

 

where the  Z ’s are blocks of zeroes, then [45] 

 
1 2.T T T . 

In section 2 and 3, D   and    are diagonal block matrices. If blockes on the main 

diagonal are vertible matrices, then using Lemma 1, there are 1D  and 1  . 
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