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Abstract
Let S be a semigroup with a left multiplier T on S. A new product on S is defined by T
related to S and T such that S and the new semigroup St have the same underlying set as S.
It is shown that if T is injective then ¢*(St) = €*(S)7 where, T is the extension of T on
¢*(S). Also, we show that if T is bijective, then ¢*(S) is amenable if and only if ¢*(Sy) is

so. Moreover, if S completely regular, then ¢*(Sy) is weakly amenable.
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Introduction
Let S be a semigroup and T be a left multiplier on S. We present a general method of
defining a new product on S which makes S a semigroup. Let St denote S with the new
product. These two semigroups are sometims different and we try to find conditions on
S and T such that the semigroups S and St have the same properties. This idea has
started by Birtel in [1] for Banach algebras and continued by Larsen in [11]. Recently,
this notion developed by some authors, for more details see [1], [10], [11], [12] and
[15]. One of the best result in this work expresses that L'(G)y is Arens regular if and
only if G is a compact group [10]. We continue this direction on the regularity of S and
St and the amenability of their semigroup algebras.
The term of semigroup will be a non-empty set S endowed with an associative binary
operation on S, defined by (s,t) — st. If S is also a Hausdorff topological space and the
binary operation is jointly continuous, then S is called a topological semigroup.
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Let p €S. Then p is an idempotent if p? = p. The set of all idempotents of S is
denoted by E(S).

An element e is a left (right) identity if es = s (resp. se =s)for all s€S. An

element eeS is an identity if it is a left and a right identity. An element z is a left
(resp. right) zero if zs = z (resp. sz = z) for all s € S. An element zeS is a zero if it
is a left and a right zero. We denote any zero of S by Og (or zg). An element peS is a
regular element of S if there exists teS such that p = ptp and p is completely regular if
it is regular and pt = tp. We say that p € S has an inverse if there exists teS such that
p = ptp and t = tpt. Note that the inverse of element p € S need not be unique. If peS
has an inverse, then p is regular and vise versa. Since, if p € S is regular, there
exists s € Ssuch that p = psp. Let t = sps. Then
p = psp = (psp)sp = p(sps)p = ptp, t = sps = s(psp)s = (sps)p(sps) = tpt.
So p has an inverse. We say that S is a regular (resp. completely regular) semigroup if
each peS is regular (resp. completely regular). Also S is an inverse semigroup if each
p € Shasaunique inverse. Themap T : S — S is called a left (resp. right) multiplier if
T(st) = T(s)t (resp. T(st) =sT(t)) (s, teS).
The map T:S— S is a multiplier if it is a left and right multiplier.Let S be a
topological semigroup. The net (e,) S S is a left ( resp. right) approximate identity if
lim, e,t = t. (resp. lim,te, =t) (teS). The net (e,) < S is an approximate identity if
it is a left and a right approximate identity.

Let S be a discrete semigroup. We denote by ¢*(S) the Banach space of all complex
function f: S — C having the form

f=Yssf(s)ds,

such that Ys.s|f(s)| = |Ifll; is finite, where & is the point mass at {s}.For f, get*(S) we
define the convolution product on ¢*(S) as fallow:

f*g(s) = Xt t,=s ft1)8(t2) (seS),
with this product ¢*(S) becomes a Banach algebra and is called the semigroup algebra
on S.
Remark 1.1. If fet'(S) then f =0 on S except at most on a countable subset of S. In
other words, the set A = {seS: f(s) # 0} is at most countable. Since, if A, =
{seS: [f(s)| =1}, A= UpenAp. Set [Ifll; = M and neN is fixed. Then we have

M= Zlf(s)l > z If(s)| = z % = %IAHI,

seS seAp seAp
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where |A,| is the cardinality of A, . So |A,| < nM. Hence A, is a finite subset of S
and thus A is at most countable.

Semigroup St
Let T € Mul,(S). Then we define a new binary operation "o" on S as follow :
sot = sT(t) (s, teS).
The set S equipt with the new operation "o" is denoted by St and sometimes called
"induced semigroup of S™. Now we have the following results.
Theorem 2.1. Let S be a Semigroup. Then (i) if T € Mul;(S) then St is a semigroup .
The converse is true if S is left cancellative and T is surjective .
(i) If St is left cancellative and T is surjective, then T~ € Mul,(S).
(iii) If S is a topological semigroup and St has a left approximate identity then T~ e
Mul,(S) .
Proof. i) Let TeMul;(S) and take r,s,t €S. Then
ro(set) =rT(set) =rT(sT())=rT(s)T(t) = (rT(s)) T(¢)
= (ros)ot
So, St is a semigroup.
Conversely, suppose that S is left cancellative and take r,s,t €S. Since T is surjective,
there exists ueS such that T(u) = t. Then
rT(st) =rT(sT(u) )=ro(seou) =(ros)ou=(rT(s) )T(u)
= r(T(s)t).
By the left cancellativity of S, we have T(st) = T(s)t (r,seS) . So, T is a left
multiplier.
i) We must prove that T is injective. To do this end, take r,s,ueS and let T(r) = T(s).
Thenuor =uT(r) = uT(s) =uos. Sor =s, since Sy is left cancellative. Hence T~!
exists.
Now, we show that T~! € Mul,(S). Take r,seS. Then
T 1(rs) = T YTT 1(r)s] = T YT(T 1(r)s)]
= (T[T 1(r)s] = T 1(r)s.
iii) It is enough to show that T is injective. Take r,seS and suppose that T(r) = T(s).
Then

r =limgey o r =limy e, T(r) =limye,T(s) =lim,e, o s =s.
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There are many properties that induced from S to semigroup St. But sometimes they
are different.
Theorem2.2. Let S be a Hausdorff topological semigroup and TeMul,(S). If S is
commutative then so is St . The converse is true if T(S) = S.
Proof. Suppose S is commutative and take r,s € S. Then

ros=rT(s) =T(s)r=T(sr) = T(rs) =T(r) s=sT(r)=sor.

So, St is commutative.

Conversely, Let St be commutative and take r,s €S. Then there exist nets (r,) and
(SB) in S such that lim, T(ry) = rand limg T(SB) =s.
So, we have
rs = limg limg T(ra o sﬁ) = lim, limg T(sﬁ 0 ra) = lim, limg T(SB) T(r,) =sr.
Thus S is commutative .

In the sequel, we investigate some relations between two semigroup S and Sy
according to the role of the left multiplier T.
Theorem 2.3. Let S be a semigroup and TeMul;(S) .Then
(i) If T is surjective and St is an inverse semigroup then S is an inverse semigroup and
T(s™) = T(s) ! forall seS.
(if) If St is an inverse semigroup and T is injective then T(S) is an inverse
subsemigroup of S.
(iii) If Tis bijective then St is an inverse semigroup if and only if S is an inverse
semigroup.
Proof. i) Suppose that St is an inverse semigroup and T is surjective. Define the map
¢: St = S by o(s) = T(s). Take r, seS, then

@(res) =T(res) =T()T(s) = p(r)p(s).

So, ¢ is an epimorphism from S onto S, since T is surjective. By theorem 5.1.4[7], S
is an inverse semigroup and T(s~1) = T(s)~! for all seS .

ii) Suppose that T is injective and S is an inverse semigroup. Evidently, T(S) is a
subsemigroup of S. We show that it is an inverse semigroup. Take seT (S). There exists
teS such that s = T(t). Also, there exists a unique element ueS suchthatt =t uot,
since S is an inverse semigroup. Therefore, T(t) = T(t)T(wW)T(t),ors =s o T(u) o s.
Of course, T(u) is unique because ueS is unique and T is injective. Hence T(S) is an
inverse subsemigroup of S .
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iii) Suppose that T is bijective and let S be an inverse semigroup. Since T is injective
and surjective, by (i) and (ii), S = T(S) is an inverse semigroup.
Conversely, suppose that S is an inverse semigroup. Since T is bijective , by theorem
2.1(ii), T leMul;(S). So ¢! §—S; defined by ¢ 1(s)=T"1(s) is an
epimorphism. Hence by (i) S is an inverse semigroup

We say that T € Mul;(S) is an inner left multiplier if it has the form T = L, for
some seS where Ly(t) =st (teS).

If TeMul;(S) is inner, then each ideal of § is permanent under T; that is T(I ) S I
for all ideal I of S . It is easily to see that if S has an identity, then each T € Mul;(S) is
inner.

Let S be asemigroup. Then S is called semisimple if I? = I for all ideal | of S (see
[9], page 95 for more details).

Theorem 2.4. Let S be a semigroup whit an identity and T € Mul;(S). If St is
semisimple, then S is so. The converse is true if S, is left cancellative and T is
surjective.
Proof. Since S is unital there exists ueS such that T =1L, . Suppose that Sy is
semisimple and I is an ideal of §. Then
IoS=IT(S)SISCI.

Similarly, So I < I . It follows that I is an ideal of S, . By the hypothesis (1;7)? = I o
I = I.Now, take rel then there are s, tel such that

r=sot=sT(t) =s(ut) € I’
So we show that I? = I and hence S is semisimple.

Conversely, assume that S is left cancellative and T € Mul;(S) is surjective then
by theorem 2.1(ii), T~ teMul,(S). So, there exists beS such that T~! = L, . Suppose
that § = S,-1 . Then we have .

S =Srp-1 = (Sp)p-1 = Sp-1.
By hypothesis and above the proof, § = §,-1 is semisimple.

Semigroup Algebra ¢*(Sy)

We say that a discrete semigroup S is amenable if there exists a positive linear
functional on ¢ (S) called a mean such that m(1) = 1 and m(L,f) = m(f) , m(r.f) =
m(f) for each seS, where I f(t) = f(st) and r,f (t) = f(ts) for all teS. The definition
of amenable group is similar to semigroup case. Refer to [12] for more details.
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Let A be a Banach algebra and let X be a Banach 2 —bimodule. A derivation from 2

to X is a linear map D: A — X such that
D(ab) =D(a)-b+a-D(b) (abe?).
A derivation D is inner if there exists xeX such that
Da)=a-x—x-a (ae).

The Banch algebra 2 is amenable if every bounded derivation D: 2 — X* is inner for
all Banach 2« —bimodule X. Where X* is the dual space of X. We say that the Banch
algebra U is weakly amenable if any bounded derivation D from 2 to A" is inner. Fore
more details see [12],[16] .

If S is a commutative semigroup, by theorem 5.8 of [8] ¢*(S) is called semisimple if

and only if forall x,yeS , x? = y2 = xy implies x = y.

Theorem 3.1. Let S be a commutative semigroup and let T € Mul;(S) be injective .
Then €1(S) is semisimple if and only if ¢*( Sy) is semisimple.

Proof. Take r,s € S. Thenr? = s?2 =rs ifand only if T(r?) = T(s?) = T(r)T(s) or

equivalently ror=sos=r1ros , because T is injective. So, by theorem 5.8 [8],

¢1(S) is semisimple if and only if £*(S;) is semisimple.

Theorem 3.2. Let S be a discrete semigroup and T € Mul;(S). Then

(i )The left multiplier T has an extension TeMul, (El(S)) with the norm decreasing.

(ii) The left multiplier T is injective if and only if so is T.

(iii) If T is injective then T is an isometry and also ¢*(S;) and (El(S)) are
T

isomorphic.

Proof. (i) An arbitrary element fe ¢'(S) is of the form f:S§ — C such that f(x) =0

except at the most countable subset A of S. If A is a finite subset of S then
f = Xk=1f(xx) &y, for some fixed neN. So in general we have

f=) 108 = Y fG08 =i £ B,
k=1

X€eS X€eA

Now, for each neN, let f, = Yjp_; f(x;)8,, and define T:0'(S) —C'(S) by
T(6,) = br(o (x €S),
T(f) = That fOR) T(6x,) = fro -
For each m,neN where n > m, we have
17D = TUDN, = Ifa = Fnll 1= 12520 FCa) T8 )| = 1220 G Srep ||
< Ykom @l = Nfn = fn Il -
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So {T(f,)}, is a Cauchy sequence and it is convergent. Now, we defineT(f) = lim,, f,,.
Then the definition is well defined. Hence
T(f) = Xi=i f) T(8x,) = f
also
I71l, < Sxgen FG@IL = lIfll; o [T, < I

It shows that T is norm decreasing.

In the following, we extend T by linearity. Let £, ge t*(S). Then there are two at
most countable sub set A, B of S such that

f=2xeaf ()65, g =Xxen 9(x)6y .
Supposethat D =AU B.Sowehave f+ g =Yyep (f(x) + g(x))d, .
Then, it follows that
T(f+9) = f+9 = Zaep(F(X) + gONT(8:)= Txea f (%) T(8x) + Yixe 9 (%) T(85)
=f+3.
Also, if aeC ,we have
T(af) = af = Sxea af ()T (6y) = aTxea f($)T(8x) = oT(f).

Therefore, T is a bounded linear isometry.
Now, we prove that TeMul, ( El(S)). Take x, yeS. Then

T(Sx * y) = 7~w(sxy) = O8r(xy) = Or(x)y = Or(x) * Oy = T(8,) * Sy.
Let yeS be fixed and f, ge £*(S). Then

T(F58,)=TCY f@) ) = Y fCIT(8)

X€eA X€eA
= (ZxeaT (8)) %8, = f %8, =T(f) + 6.
In the general case, we have
T(f * 9) = TCxea f () (Byes 9))8xy)= Tea f () Tyes gOIT(8x) * 8,
= Yixea f(x)T(5x) * ZyeB g) 8, = T(f) *g -
This shows that T is a multiplier on £*(S).
(i) Let T be injective. Take x, yeS and suppose that T(6,) = T(8,) . Then ) =
T(6,) = T(5y) =01y -
Therefore, T(x) = T(y). Since T is injective, we have x = y. It follows that &, = 6, ,
consequently T is injective.
Conversely, the same argument shows that the converse holds.
(iii) Let T be injective and fet*(S). Then there exists at most a countable subset A € §
such that
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f= ZxEAf(x)ax
Since Aand T(A) have the same cardinal number, |T(f)| = IZxea f(X) 8xll =

Yeal FCOI=NF1 , so T is an isometry.
Now, we can define a new multiplication "[¥]" on ¢*(S) as follow
fHg=f*Tg (f get(5)).
By a similar argument in theorem1.31 [10], ¢'(S) with the new product is a Banach
algebra that is denoted it by ¢*(S)7. We define the map ¥: ¢*(S;) — ¢*(S)#, by
¥Y(5,) =6, ( xeS).
Take x,y €S. Then
P(8 * y) =¥(s oy) = Oxr(y) = Ox * Or(y)
=6, *T(8,) = 6,[}] 6,
=¥(5,) [ ¥(5,).
So, in general case, we have
Y+ =Y OE Y@  (f gel(®).

Thus, ¥ is an isomorphism. Therefore ¢*( S7) and £(S)= are isomorphic

Theorem 3.3. Let S be a semigroup and T € Mul,(S) be bijective. Then ¢*(S) is
amenable if and only if ¢*(S;) is amenable.

Proof. By theorem 3.2, we have £'( S7) = ¢'(S)7 . Suppose that ¢'( S;) is amenable
and define  ¢: (1(8)7 — *(S) by @ (f) = T(f). Take x, yeS. Then
‘P(Sx Sy) = T(éx 53/) = 7~w(axT(y)) = T(Sx * 5T(y)) =T(8,) * Sr(y)
= T(6,) * T(68,) = p(8x) = ¢(8,) .
Now, by induction and continuity of T, we have
e(f[x9) = o(f) *o(g) .
If T is bijective, T is bijective. Therefore ¢ is an epimorphism of ('(Sy) onto
e'(s).
Hence , by proposition 2.3.1 [16] ¢'(S ) is amenable.

Conversely, suppose that ¢'(S) is amenable. Since T is bijective, T is bijective.
Therefore T ~exists. Now define 6: ¢*(S) — ¢'(Sy) [E '(S)7] by 6(f) =T~ (f).
Take x,y €S .Then

0(6,%6,) =T (8xy) =T (6ITT(6,) =T (6)[HIT 7 (5,)
= 0(5,) []0(5,) .
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Similarly 6 is an epimorphism from ¢(S) onto €¢*(S ;) . By proposition 2.3.1 [16]
¢*(S ;) isamenable.

Note that, in general, it is not known when ¢*(S) is weakly amenable. For more
detials see [2].
Theorem3.4. Let S be a semigroup and T € Mul;(S) be bijective . Then, if S is
completely regular then ¢*( S ;) is weakly amenable.

Proof. It is enough to prove that S  is completely regular, then by theorem 3.6 [2],
¢*( S;) can be weakly amenable. Take seS. Then there exists reS such that T(s) =
T(s)T(r)T(s), T(r)T(s) =T(s)T(r), since T is bijective and S =T (S ) is completely
regular. Sowe have T(s) =T(seros)and T(ros) =T(ser). Hence s =soros
and ros =sor for some reS, since T is injective. Therefore §  is completely
regular.

Corollary.3.5. Suppose that S is a commutative completely regular semigroup and
T € Mul,(S) isinjective. Then ¢*(T(S)) is weakly amenable.

Proof. [2, theorem 3.6 ] £'(S) is weakly amenable. Define ¢: S — (), by
@(s)=T7(s)  (s€S).

We show that ¢ is a homomorphism . Take seS, then we have

ors)=T Y(rs) =T 1(r)s =T 1(r)o(T1s).
So ¢ is a homomorphism. Then by proposition 2.1[7], ¢*(T(S)1) is weakly amenable.
In the case that S is a group, it is easy to see that the amenability of S implies the
amenability of ¢*( S;). Indeed, when S is a group, by theorem 2.1, S is a semigroup
and one can easily prove that S; is also a group. On the other hand, Mul;(S) =S
because S is a unital semigroup, so each TeMul;(S) is inner and of the form T = L,
for some seS. Also T~ = L,-1 exists, since S is a group. Then the map 6:S; — S
defined by 6(s) =T(s) is an isomorphism; that isS =S, . Thus we have the
following result:

Corollary 3.6. Let S be a cancellative regular discrete semigroup. Then £(S) is
amenable if and only if ¢'( S;) is amenable.

Proof. By [9,Exercise 2.6.11] S is a group. So the assertion holds by [15, theorem
2.1.8]
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Examples
In this section we present some examples which either comments on our results or
indicate necessary condition in our theorems.
4.1. There are semigroups S and T € Mul;(S) such that the background semigroups
S are not commutative but their induced semigroups S§; are commutative.
This example shows that the condition T'(S) = § , in theorem 2.2, can not be omitted.
Let S be the set {a, b, c, d, e} with operation table given by

a b ¢ d e

ala a a d d
bja b ¢ d d
cla ¢ b d d
dj{d d d a a

e|d e e a a
Clearly(s,.) is a non-commutative semigroup. Now, put T = L, where L,(x) = ax for
all xeS. One can get easily the operation table of S as fallow:

o la b ¢ d e

a a a a d d
b a a a d d
c a a a d d

d |[d d d a a

e |d d d a a

The operation table shows that the induced semigroup S is commutative and T(S) #
S. Also the other induced semigroup S+ is commutative for T = L; analogously.

Now we present some important theorems from[14] that we need in the following

examples:

Theorem 4. 2. Let S be a semigroup. Suppose that £*(S) is amenable. Then
(i) S isamenable

(i1) S is regular.

(iii) E(S) is finite.

(iv) £*(S)has an identity.

Proof. (i) That is lemma 3 in [5].

(ii) and (iii) See theorem 2 in[6].
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(iv) That is corollary 10.6 in[4].

Theorem 4.3. Let § be a finite semigroup. Then the following statements are
equivalent:

(i) L*(S) is amenable.

(i) S is regular and £*(S) is nuital.

(i) ) S is regular and ¢*(S) is semisimple.

Proof. Refer to [3].
4.4. There are semigroups S and T € Mul,(S) such that S and ¢*(S) are amenable but
S is not regular and also, £*( S;) is not amenable.
This example shows that two semigroup algebras ¢*(S) and ¢*( S;) can be different
in some properties. Also, it notifies that the bijectivity of T in the theorem 3.3 is
essential. Put S = {x,, X1, X2, ..., X, } With the operation x;x; = Xyaxpj; (0 <1i,j<mn,
nx=2).
Then S is a semigroup. Since

Max{i, Max{j, k}} = Max{Max{i, j}, k} = Max{i, j, k}.
We denote it by S,. This semigroup is commutative. So by (0.18) in [12], it is
amenable. S, is a unital semigroup and has a zero; indeed, e; = x, and og = x,, . Also,
itisa regular semigroup and Mul(S,) = S, because S,, has an identity.

Evidently, S, is regular since each s € S, is idempotent. The semigroup algebra
¢*(S,) is a unital algebra because S, has an identity. So by theorem 4.3 (ii) €¢*(S,) is
amenable.

Now, take T =L, for a fixed x,eS where k = 1. By theorem 2.2, (§\)r is
commutative so is amenable. We show that T is neither injective and nor surjective.
Take x;€Sy, then Tx; = xpX; = Xpmax(k,i}- SO

T(Sy) = {xk X415 s Xn} # Sy
Hence, T is not surjective.

Again, take distinct elements x;, x; in S, for some i,j < k such that T (x;) = T(x;) .
Then we have Xpaxik.i} = Xmax{k,j3 PUtx; # x; . So T is not injective.

We prove that (S ) is not regular. If (S,) is regular, then for x,_,€S, there exists
an element x; €S, such that

Xg—1 = Xg—10Xj0Xk-1 = XMmax{k,j} -


http://dx.doi.org/10.29252/mmr.2.1.33
https://dor.isc.ac/dor/20.1001.1.25882546.1395.2.1.4.5
https://mmr.khu.ac.ir/article-1-2576-fa.html

[ Downloaded from mmr.khu.ac.ir on 2025-11-28 ]

[ DOR: 20.1001.1.25882546.1395.2.1.4.5]

[ DOI: 10.29252/mmr.2.1.33 ]

44 Vol. 2, No. 1 Spring & Summer 2016 Mathematical Researches
(Sci. Kharazmi University)

That implies that max{k, j} = k — 1; which is impossible. Consequently, by theorem
4.2 (i) or 4.3 (i), £*((Sy)7) is not amenable.
Also, the inequality Syo S, = {Xy, Xx11, .., Xn} # S, shows that €'((S,)r) is not
weakly amenable. In the next example we show that in the theorem 3.2 (iii) the
condition "injectivity of " can not be omitted.
4.5 There are a semigroup S and T € Mul;(S) such that T € Mul,(S)is not injecyive
and the corresponding T € Mul, (El( ST)) IS not an isometry.

Suppose that S, is a semigroup as in example 4.4 and T = L, for some fixed

1<k <n Iffet’(S,) then f = Yo f(x)8y, and also T(f) = XiL, f(x;)r(y, - But
T(x,) = {xi k<i<n
WS 0<i<k’

SO

T(f) = (ZI;:O f(xl)) 5xk + Z?=k+1 f(xi)5T(xi) .

Zk:f(xi) + zn: |f (o)l
i=0

i=k+1
k n
< DG+ D IFE = Iflh
i=0

i=k+1

Hence

17O =

It shows that T is not an isometry.
4.6. There are semigroups § and T € Mul,(S) such that £1(S) is semisimple.
But #1( S;) is not semisimple. This example remind that, in theorem 3.1 the
multiplier T must be injective.

Let S be a set {xq, x4, ..., X5} where neN and n > 3 is fixed. by operation given
by xy = Xmin (i j3» S IS @ commutative semigroup. Since

min{i,min{j, k}} = min{min{i, j}, k} = min {i, ], k} (i,j, keN).

We denote it briefly by S, For each x,yeS the equality x? = y? = xy implies
x = y.So by Theorem 5.8 [8] ¢ (S/\ ) is semisimple.

Now, letT = L,, forafixed 1 < k <n—1. Itis easy to see that T (xy) = T (x,)
but x, # x,.So the multiplier T is not injective.

We show that neither §, nor e (S/\)T is semisimple.
Each ideal of § is of the form

L, ={xg,%1, ..., X} (M <n).

We claim that S is not semisimple. Since for each meN we have
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| m<k
I,ol, = { m
Ik m>k
On the other hand, for each x;,x;eS where i # j and i,j > k , we have xo x; =

Xjo Xj = X; © Xj = X , while x; # x; . Thus, Theorem 5.8 [8] shows that fl(SA)T is

not semisimple .
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