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Abstract

In this paper, two inverse problems of determining an unknown source term in a
parabolic equation are considered. First, the unknown source term is estimated in the form
of a combination of Chebyshev functions. Then a numerical algorithm based on Chebyshev
polynomials is presented for obtaining the solution of the problem. For solving the
problem, the operational matrices of integration and derivation are introduced and utilized
to reduce the mentioned problem into the matrix equations which correspond to a system of
linear algebraic equations with unknown Chebyshev coefficients. Due to ill-posedness of
these inverse problems, the Tikhonov regularization method with generalized cross
validation (GCV) criterion is applied to find stable solutions. Finally, some examples are
presented to illustrate the efficiency of this numerical method. The numerical results show
that the proposed method is a reliable method and can give high accuracy approximate

solutions.
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keywords: Parabolic equation, Inverse problem, Unknown source term, Tikhonov regularization,
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Introduction
Inverse problems play an important role in various fields of science and engineering
which aim to detect some unknown parameters from some additional data related to the

problem. These kinds of problems have been studied by many authors [1-5].
Consider the following problem of determining the function u(x,t) satisfying the

parabolic equation
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u, —u, =s(x,t), O<x<L,0<t<r, 1)
with the initial condition
u(x,0) =uqy(x), O<x <L, (2)
and the boundary conditions
u(0,t) =gg(t), u(L,t)=g,@t), O<t<r, (3)
where ug(x), go(t) and g,(t) are piecewise continuous functions in their domains.

Also these functions satisfy the conditions u,(0)=g,(0) and uy(1)=g,(0). This

problem is induced in the process of transportation, diffusion and conduction of natural
materials [6,7].

Here we consider that the source term, s(x,t), is an unknown function which needs to
be determined. This problem is called as inverse source problem [1]. In many
applications resulting the parabolic type diffusion problems, the source terms are
usually not easy to detect directly. For example, the problem of identifying sources of
water and air pollution intensity in the environment is a case of this type of problem.
Solute transport in a uniform groundwater flow can be described by the parabolic
equation

u, — Du,, +VU, + RO =sy(x,t), x €eQ,0<t <T,
where Q is a spatial domain, 0 is the solute concentration, V represents the velocity of

watershed movement, R denotes the self-purifying function of the watershed, and
So(x,t) is a source term causing the pollution function o (x ,t)[8]. Putting

V—x—(£+R)t
T(x,t)=u(x,t)e2b 4D

we get
u, —Du,, =s(x,t),

Where

2
V—x +(V—+R)t
4D

S(x,t) =sp(x t)e 2D

An estimation of pollutant source is vital to environmental safeguard in cities with

high populations [9]. As another example, heat source identification problems are the
most commonly encountered inverse problems in heat conduction.

In this study, we suppose that source function is separable and can be represented in

the form
s(x,t)=f (x)g(), O<x<L,O0<t<r, 4)
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where one of the functions f(x) or g(t) is known in its domain and the other function is
unknown which remains to be determined. Many researchers have used this assumption
to estimate unknown source function, in literature [10-28]. In different applications, one
of these terms assumes to be specified according to the physical and environmental
conditions of the problem and the other term will be approximated to find the unknown
source functions (x,t). For solving this type of problems, an overspecified condition
shall be considered. Therefore, we define two problems as follows:
Problem 1. Consider the equation (1) with the source term function as (4). Suppose
g (t)is given and the function f (x) is unknown. For solving this inverse problem, we
assume an overspecified condition as the final data

u(x,7)=e(x), O0<x<L. (5)
Problem 2. In this case, we consider the equation (1) with the source term function as
(4) where the function g (t) is unknown. We suppose the overspecified condition as

u(Xg,t)=x(@t), O<t<r, (6)
for solving this inverse problem, where < x, <L is a constant.

The overspecified conditions (5) and (6) are necessary for unigue solvability of these
two inverse problems. The unique solutions for these problems are discussed in [10, 11].
In the case of heat source identification problems, the condition (5) is the additional
temperature measurement at a terminal moment of time z and the condition (6) is the
overspecified temperature values at an interior point x, € (0,L) where a thermocouple
is located to record the temperature measurement.

Problem 1 and Problem 2 belong to the class of inverse source problems, which are
ill-posed [1, 12-17], since small errors in any practical input data, give rise to
unbounded and highly oscillatory solutions. So, numerical reconstruction is very
difficult and some special regularization methods are required to obtain an accurate
approximation solution. In [18-23] researchers have investigated some numerical methods
for special cases of reconstructing the space-dependent source term. Also for the case of
recovering the time-dependent source term, authors in [23-28] have introduced some
other numerical schemes.

In the rest of this paper, by using the conditions (5) and (6) as overspecified data, a

numerical algorithm is presented for solving these two inverse problems based on the
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Chebyshev polynomials. The paper is organized as follows: In Section 2, basic properties
of bivarniiate second kind Chebyshev polynomials are presented and operational
matrices of these polynomials are introduced. In Section 3, we give an approximation of
the unknown source function. Also, the approximate solution of the main problem is
presented in Section 4. In Section 5, some numerical examples are presented. The

conclusion is included in Section 6.

Preliminaries
2.1. Definition and function approximation

The second kind Chebyshev polynomials (SKCPs) are orthogonal polynomials on
the interval [-1,1]and can be determined with the following recurrence formula [29]:

U,,(x)=2xU; (x)-U,; 4(x), 1=123,...,
where U,(x)=1and U,(x)=2x . By the change of variable we will have the well-
known shifted SKCPs on the interval [0, L]as follows
UL,i (X):UI(%X —1), | :0,1,2,"'

The function U _; (x) satisfies the following properties

Ui (0)=(-D'(i +D), (7)
U i(L)=i+1 (8)

4 [i/2]
Uli(x)= Z(' 2k Wi ok a(X), U 4(x)=0, 9)

IOXUL,i(s)ds= (DU () = 2U 1200 +5U 1], Uy () =0, (10)

2(i +1)
The orthogonality condition is

Jow UL U )ik = =25,

w, (x)= /1—(%x ~1)%.

A function f (x), square integrable on [0,L], may be expanded in terms of the

shifted SKCPs as follows

where

f )= U, x),
i-0

where the coefficients a; are given by
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a =W (OF (UL ()X, T =01,2,0- (10)
Lz -0 ’
To obtain the coefficients a; , we use the second kind Gauss-Chebyshev quadrature

formula [29] as
2 K .2 Kk
a=——> sin“(——)f (X, Ui (xe),
1 G UL 0c)
where x,, k =12,...,K arethe zeroesof U , (x) as
(@4
+1). 11
K+1) ) (11)
In practice, only the first (N+1)-terms are considered. Hence, f (x) can be

Xy =%(cos(

approximated as follows

N
F )= aUL;(x)=ATy (x) =yl (X)A, (12)
i=0

where the coefficient vector A and the shifted Chebyshev vector y, (x) are given by

A=[ay,a,....ay ],

L ()=o) U L), Uy T (13)
Definition 2.1. Bivariate shifted SKCPs are defined on [0,L]x[0,z]as
dt(x ) =UL O 0), 1,0 =01,2, (14)

Bivariate shifted SKCPs are orthogonal with each other as:

2
T

7oL . . L
Jo Jo WL 0O O D (0, axdt === 8y,
where w__(x,t)=w (x)w_(t).
A function u(x,t) defined on [0,L]x[0,z] may be approximated in terms of the

bivariate SKCPs as follows

u(x,t) = Nz Nzcij g " (x,1)=CTd__(x,t)=d[ (x,t)C, (15)
i=0j=0

where
T
C = [COO’CO].""’CON ,...,CN O'CN 1""’CNN ] f

(17)
(DL,T (Xft) = V/L(X) ®l//‘r (t)

= [s” (6 1), o (60, ot (X, 1), i (X 1), i (X, 1), e (6 )]

and ® denotes the Kronecker product defined for two arbitrary matrices A and B as

(for more details see [30], Chapter 13):
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The coefficients Cjj in equation (16) are obtained as follows
_ 16 (reL Lr
G =1 7 fo fOWL,T(X u(x,t) gy (x,t)dxdt.

The following second kind Gauss-Chebyshev quadrature formula is used to obtain the

coefficients c;; ,

¢ ——2 iisinz(k—”)sinz('—”)u(x £t (X0t
VUK H)2EET K+ TR T e s
where x, is defined by (12) and t;, I =1,2,...,K are the zeroes of U _  (t) as
T | 7
t, =—=(cos +1).
=5 (008G =) +D)

2.2. Operational matrices
In this section, we will use the properties of the shifted SKCPs introduced above, to

construct the needed operational matrices.
Theorem 2.1. Let ®_(x,t) be the bivariate shifted Chebyshev vector given by (17),

then
oD, ,(x,t)
— = =D®_ _(x,t), 16
OX L,’[( ) ( )
where Disan (N +1)? x(N +1)% matrix as
O O O O O O]
I O O O O O
D—4 O 21 O O O O
LIl O 3 O o of
_Ml M2 M3 M4 M NI O_

in which M,,M,, M;and M, are I , O, 3l and O, forodd N and O, 21 , O and

41 , for even N, respectively, and | and O are the identity and zero matrix of order

N+1, respectively.
Proof. Using the definition of the vector @ _(x,t) we get

0P (X,1) _ oy (X) ®w. (1))

=y’ (X)®w_(t). 19
o o y'L(X) @, (t) (19)
On the other hand, using equation (9) we have
, 4
ULio(x)=E[O,O,O,O,....,O,O]l//L(x),
4

U{4(6) =T [10,0,0....,0,0ly (x).
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U{ () = é[o,z,o, 0,....,0,0]y, (X),

U{ 5(x) = é[L 0,3,0,....,0,0]y, (X),

Finally, for even N we obtain

U/ (x) =%[0,2,0,4,....,N 0w, (X),

and for odd N we get
, 4
Ul n(X) =E[1,0,3,0,....,N ,0Jy ().

Therefore, we have

w' L (X) = Dgy (x), (20)
where
[0 0 0 0 0 O]
1 0 0 0 0O O
5 _ 4 0o 2 0 0 0 0
"It o 3 o0 0 o
Mm: M2 Ms My N 0_

in which m;, m,, m; and m, are 1, 0, 3 and 0, for odd N and 0, 2, 0 and 4, for even N,

respectively.

Substituting (20) into (19) and using the properties of the Kronecker product yield

0 :
(DL,az'X(X t) = (DOV/L (X ))®(| l//z.(t)) =(D0 (]| )(l//L(X)®l//r(t)) — DCDL’T(X ,t),

which completes the proof.o

In a similar way, it can be proved using equation (10), that the integration of the vector
@, . (x,t) withrespectto t can be approximated by

I;CDL,T(X’V)dt'= PO (x,1), (21)

where Pisan (N +1)?x (N +1)?matrix as

'Q O 0 -0
O Q O --0
O 0 Q - 0]

N |

0 0 O - Q]

and
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1 L 0 0 o0 0 0
2

S 9 Yoo 0o o
4 4
114 1y 0 0

. 3 6 6
- 1ol o ol

4 8

_N —

D" 9 0 00 .. 1

N +1 2(N +1)

To suggest a numerical algorithm, we need to introduce two more operational matrices
W, and W, such that

@ (0,t) =Wg . (t) =y EW,, (22)
O (L) =W,y () =y; Wy, (23)
where w_(t) is defined by (14) and W, and W, are two (N +1)x(N +1)*> matrices
which can be obtained using equation (7) and (8), respectively, as follows
w0:[| ~21 31 ... (DV(N +D)I ]

Wo=[1 21 31 ... (N+DI].

Determination of the source function
In this section, we give an approximation of the unknown source function using the
shifted SKCPs. To this aim, we transform problem (1)-(3) to a zero initial and boundary
conditions problem with the change of variables as follows
w(X,t) =u(x,t) —e uy(x) — (g, () — got))x —go(t), (24)
where
U1 (X) =Uo(X) = (91(0) — 90 (0))x — gy (0).

Therefore, problem (1)-(3) is equivalent to the following problem
w(x,t)-w,, (x,t)=s(x,t)+F(x,t), O0<x <L,0<t <7,
w(x,0)=0, O0<x <L,
w(0,t)=0, w(L,t)=0, O<t<r,

where
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F(x,t)=e"ug(x)+e ™" Uo(x) —(91(0) ~9o(0)x —go(0)) — (g1 (t) ~ 9ot )x —go(t).
By using the separation of variables, the solution of this problem may be expressed as

follows

w(X,t)= 2?( j; jOL (s(&,m)+F (&7))sin(k zo)e " * €1 & n)sin(k 7x), (25)
k=1

Considering equations (5), (6) and (25), we obtain the following results.
Problem 1: We consider Problem 1 wherein the function f (x) is an unknown

function. Using equations (5) and (24), we have
W (x,7) =p(x)—e Uy (x) = (9:() = go(?))X —=Qo(7), O<x <L. (26)

The function f(x) may be approximated in terms of the shifted SKCPs as follows

N
fo)=dfU (). 27)
j=0

Substituting (27) into equation (25) yields
(28)

00 t L N . kYt — .
W (x .t)=22[fo J; ((Zf ,-UL,,-(cf))g(ﬂ)+F(cf,n)JSln(kﬂé)e (exy= &d n}sm(kﬂX)-
k=1 j=0
Collocating equation (28) in N+1 nodes (x;,z), i =0,1...,N , using equation (26)
and setting w; =w (x;,7), we have

(29)

© . N 2
W = ZZ[IO Js ((Zf UL ()9 +F (é,n)jsin(kmf)e g e anin(kﬂxi )
k=1 j=0

where
i +1
Xi =
N +2
Finally, considering X =(f;), W =w;), D=(d;), A=(g).1,j=01...,N and

L, i=01...,N.

B =W —D also using equation (29), we obtain the following system
AX =B, (30)

where

Ms

s =23 (UL g msintkasie- - o singin )

k=1

M8

d, =2

(I I F(&,7)sin(k z&)e "¢ ”)dédn)sm(kﬂx ).

k=1
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Equation (30) forms a system of (N+1) equations with (N+1) unknown coefficients
f;, 1=01...,N and the unknowns can be computed using direct methods. After

determining the coefficients f;, j =0,1,...,N , we find an approximation of the function

s(x,t)as
s(x ,t):(i)f,-U L,j (x)g ).
i=
Problem 2: In this problem, we approximate the unknown function g(t) in terms of
the shifted SKCPs as follows
g(t):_NZObjUr,j(t)' (1)
i=

Using equations (25) and (31), we obtain
(32)

00 N )
w(x,t)= 22{[; jOL (f A bU, )+ F(g,n)}in(kng)e“”) t=ng &d n}sin(k 7x).
k=1 j=0
Collocating equation (32) in N+1 nodes (x,,t;), i =0,1...,N , then using equations
(5) and (24) and finally setting w/ =w (x,,t; ) , we get

(33)

wi = Zi[ﬁ' Jo [f (5)(N2bju L) +F (é,n)]sin(kﬁéf)e(k”)z(t‘ M &d n}sin(knxox
k=1 j=0

where
t = I +1 ;
N +2
Now, suppose that X'=(b;), W'=@W;), D=(d{), A=(j),i=01...,N,

, 1=01...,N.

i=j=01...,N and B'=W '—D'where

& = 2:21( I; jOLf (EM, ; (m)sin(k zg)e ¢ =g & n)sin(kﬁxo),

* t. eL 2
r_ i H —(kz)*(t; —n) i
d/ = 2k§_1j ( jo jo F (&,n)sin(k z&)e d &d n)sm(k 7X4)-
Then, we have the following system of equations
A'X'=B’, (34)

which forms a system of N +1linear equations and can be solved using direct methods
to obtain the unknown coefficients b;, j=0,1...,N . Finally, the unknown source

function is approximated by
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N
s(x,t) = (x)(Q_bjU. ;1))
j=0

In two above problems, the elements of vector B in the linear system (30) and B in
the system (34) come from the overspecified conditions (5) and (6). These conditions
are obtained from practical measurements that are inherently contaminated with random
noise. On the other hand, due to the ill-posedness of these inverse problems, (30) and
(34) are ill-conditioned. Thus, the numerical reconstruction of solutions are very
difficult. Hence, some special regularization methods are required to obtain an accurate
approximation for solution of these systems. For this purpose, we employ the Tikhonov

regularization method. By this technique, we have a minimization problem [31] as

min I AX =Bl % +adl X112, (35)
X eRMN
or
min | AX'—B1 2 +dl X172, (36)
XfeR(NH)

the constant « >0 is regularization parameter, which controls the trade-off between
fidelity to the data and smoothness of the solution. Different methods have been applied
for determining regularization parameter [31, 32]. The method which we apply, is the
generalized cross-validation (GCV) method [33]. In our computations, we will use the
Matlab codes developed by Hansen [34] for solving the ill-conditioned systems (30) and
(34).
Numerical solution

In this section, we use the results obtained in the previous section to solve the main
problem.

Substituting the obtained source function s(x,t) into equation (1), we get the
following equation

U (X,t) —uy, (X,t) =s(x,t), (37)

with conditions (2) and (3). Integrating both sides of (37) with respect to t and using
initial condition (2), we have

U(X,t) —Up(X ,t)—j;uxx (x,t)dt’ :j;s(x )t (38)

where

Ug (X,t) =ug(x).
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We approximate the functions u(x,t), ug(x,t) and s(x,t)in (38) using the method

mentioned in Section 2 as

u(x ,t):%%cijqﬁl}"f(x 1) =CTd_ . (x,t), (39)
i=0j=0
M M

Uo(X,t) =D D cidi (X 1) =Cy d . (x,t), (40)
i=0j=0

S(Xit):%%Sijﬂg_‘r(xit):STCDL,T(X’t)! (41)
i=0j=0

where M >2 and the vector C in equation (39) is unknown. Substituting

approximations (39)-(41) into equation (38) and using equations (18) and (21) yield

UC =G, (42)
where
G =C,+P's,
and
U=(I-D?P),

here | is the identity matrix of order (M +1)2.

Now, to solve the main problem we need to apply the boundary conditions. To this

aim, the boundary conditions (3) are written using equations (22) and (23) as

CTWg () = go(t), (43)
CTW, . (t) = g,t). (44)
The functions g,(t) and g,(t) can be approximated using equation (13) as follows
9o(t) =Gg v (t) =7 ()G, (45)
0,(t) =G v (1) =y )Gy, (46)
Substituting (45) and (46) into equations (43) and (44) respectively, we have
WL =G,
W, =G;

To obtain the solution of problems (1)-(3), we replace 2(M+1) rows of the
augmented matrix [U;G] with the rows of the augmented matrices W ;G,]and W,;G,]

. In this way, the unknown vector C is determined by solving the new matrix equation.
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Numerical examples

In this section, some examples are given to show the applicability and accuracy of
our method. In order to demonstrate the error of the method to find the unknown source
function, we introduce the notations:

ey (x)=[f (x)=fy (x)),

ey (t)=lg(t)-an (1)
where f (x), fy(x), g(t), and g, (t) are the exact unknown source function in
problem 1, its approximation using the presented method, the exact unknown source
function in Problem 2 and its approximation using the presented method, respectively.
The absolute values of the error are reported at some selected grid points for the
examples. Also, we will use the following notation to show the absolute error for
approximate solution

En (X,t)=[u(x,t)—uy (x.t),

in which u(x,t) and uy, (x,t) are the exact and approximate solutions, respectively.
For noisy data, a randomly distributed perturbation & x randn is added to the additional
data, in the form

@’ (x;) = p(x;) +J x randn,
and

7°(@t) = 2(t;)+ S xrandn,
for i =0,1,...,N , where randn is a normal random distribution with zero mean and unit
standard deviation generated by MATLAB function randn and & indicates the level of
noise.

The computations were performed on a personal computer using a 2.20 GHz
processor and the codes were written in Mathematica 10. In all the examples of this
section we have used k=1 to 20 in order to calculate the matrices A and B in equation
(5) and A’and B'in equation (6).

Example 5.1. As the first example, consider the following inverse problem
U, —Uy, = (1+7%)sin(zx)g (), O0<x <1,0<t <3,
u(x,0)=sin(xzx),
u(o,t)=u(1t)=0,

with overspecified condition as
u(05t)=e', 0<t<3
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which has the unique solution given by
u(x,t) =e'sin(zx),
g(t)=e'.

We have applied the presented method to solve this problem. Numerical results are
displayed in Figures 1-4 and Table 1. In Figure 1 and Figure 2 the numerical results for
obtaining the unknown source function g (t)with N =10and their absolute errors for
various noise levels are plotted. Table 1 displays the absolute error of the source
function at some selected points with N=4, 6, 8, 10. Also, Figure 3 and Figure 4 show
the absolute error of approximate solutions obtained with M=10 at x =0.5and t =2.5,

respectively. Note that to obtain the numerical results for the unknown function
u(x,t), we have used the function g (t) obtained by N=10.

~ T T T T T T UG
-
L //-. b N
s
i % exact
= ::.V____,‘g.,,.--'*'/’ \ ] noiseless
Vi1 | mmniiBiion
1 W)
] | — — 6205

Figure 1. Plot of the function g(t) and its approximations with N=10 for Example 5.1 with
the various noise levels.
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Figure 2. Plot of the function e, (t)

in Example 5.1 with the various noise levels.
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Table 1. Noiseless numerical results for the absolute error of the source function at some
selected points for Example 5.1.

t N=4 N=6 N=8 N=10
00 6.04x1072 1.54x107 2.21x107 2.07x1077
03 4.24x107° 8.74x107° 1.49x10°° 7.61x107°
06 4.20x107 1.41x107° 262x107 | 7.24x107%°
09 7.93x107° 1.75x107° 8.62x10° | 573x107\
1.2 1.61x107° 1.30x107° 468x10° | 6.24x107%
L5 8.72x10™ 8.02x107° 3.98x10° | 1.23x107Y
18 1.44x107° 1.93x1077 524x10° | 2.31x107%
21 3.41x107° 2.10x107° 1.09x107 | 5.44x107
24 1.93x10°3 1.07x107* 4.01x1077 1.68x107°
21 5.03x1072 6.72x107* 3.33x10°° 3.21x10°°
30 2.53%x107" 8.99x107° 1.82x107 2.36x10°°
= : noiseless
= 4 6=0.01
!} ] 6=0.1
2 0=0.5

AAAAA

.....

Figure 3. The absolute errors of approximate solutions for Example 5.1 when x =0.5.

Example 5.2. Consider Problem 1 with L=1, z =1 and

The exact solution of this problem is
U(X ,t) 282X+t1

f(x)=-32.

u(x,0)=e?,
u(0,t)=e', u(t) =e'*?
u(x,l)=e?* gt)=e'.
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: ’ noiseless
S ek J R 6=0.01
e i - 6=0.1

- 0=05

Figure 4. The absolute errors of approximate solutions for Example 5.1 when t = 2.5.

Figures 5-8 and Table 2 report the numerical results for this example. Figures 5 and 6
show the numerical results for f (x) with N =6 by various noise levels. After

substituting the approximate f (x) obtained with N =6 into the main problem, the
numerical approximations of u(x,t) with M =6 have been produced so that the
numerical results at x=0.5 and t =1 are given in Figure 7 and Figure 8, respectively.
Table 2, displays the absolute error at some selected grid points with different values of

M after substituting the noiseless result obtained by N =6.

= [—= \‘: - ] @ 2
_s[ _ — = exact
\.\\'\
- D / noiseless
= -0} S 5 i
[ - i 1|---- 6=001
2 »z \\'\ / - s_n0Ns
; e o 6=0.05
i T 1| — — 6=0.1

-0 . 1\ ./

Figure 5. Plot of the function f(x) and its approximations with N=6 in Example 5.2 with the
various noise levels.
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Figure 8. The absolute errors of approximate solutions for Example 5.2 when t=1.
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Table 2. Numerical results for the absolute error at some selected grid points when t=1 for

Example 5.2.

X M=2 M=4 M=6
0.1 3.82x10t 0.84x107* 1.79x107*
0.2 5.48x107! 5.74x1073 2.68x107°
0.3 5.47x107! 9.99x1072 2.86x107*
0.4 414 %1071 7.93x107° 6.63x107*
0.5 1.94x107L 5.83x107* 6.19x107*
0.6 5.94 %1072 7.99%x1072 242x107*
0.7 2.81x107! 1.28 %1072 1.56x107*
0.8 3.91x107! 1.05x1072 9.08x107*
0.9 2.90x107* 3.00x107° 1.90x1072

Example 5.3. In this example, we compare our method with some previous approaches

for estimating the unknown source term. Consider problems (1)-(4) with g (t) =e™*

and ugy(x) =gy (t) = g,(t) =0. With these assumptions, the exact space dependent source
function is f (xX)=sin(zX). For obtaining noisy data, similar to [21], the term

-03 _ -7*

26(rand-0.5) is added to (p(x)zez—e
7°-0.3

approximations for various noise levels are shown in Figure 9. Also Table 3 and Table 4
I o) =)
[t 0

in comparison with some other numerical methods, where ||| is L* -norm on [0,1].
fia

The source function and its

show the relative errors of the numerical results f (x) to estimate f (x)

10
o

I I 1 T
0o n ne n 40
0.2 0.4 0.8 0.8 ]

Figure 8. Exact source function (Black) and its approximations N=10 in Example 5.3 for
additional data with the noise level & =0.001(Blue), 6 =0.01(Red) and & =0.03(Green).
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Table 3. Comparison between the errors of the estimated source term when N=5 with

some other methods for Example 5.3.

Noise level Sinc-Galerkin method | Spectral method based on Ritz method Our method
[22] Legendre polynomial [21]
S =0.001 0.0942 0.1223 0.0068 0.0096
o=0.01 0.2644 0.1789 0.0319 0.0116
o =0.03 0.4660 0.2037 0.1038 0.0649

Table 4. Comparison between the errors of the estimated source term when N=10 with

some other methods for Example 5.3.

Noise level Sinc-Galerkin Spectral method based on Ritz method Our method
method [22] Legendre polynomial [21]
S5 =0.001 0.0461 0.0780 0.0095 0.0071
5=0.01 0.2871 0.1315 0.0262 0.0192
5 =0.03 0.3735 0.1770 0.0995 0.0391
Conclusion

In this work, we applied a spectral method based on the second kind Chebyshev
polynomials to the numerical solution of a parabolic inverse problem with unknown
source function. First, we introduced a method to find an approximation of the unknown
source function by considering this function in the form of a linear combination of
Chebyshev polynomials. A system of linear equations was constructed to obtain the
coefficients of this combination. Since this system of equations was ill-conditioned, the
Tikhonov regularization technique was applied to find a stable solution. Then, by
substituting the result into the main problem and using the operational matrices, which
are all sparse matrices, we obtained an approximation of the solution. Although using
Chebyshev polynomials to solve partial differential equations is a classic method, but
using these polynomials to obtain the unknown source function in inverse parabolic
problems, according to the numerical algorithm which is presented in this work, is new.
The numerical results show that the proposed method in this paper is a reliable method

and gives good results even when we use a small number of the basis functions.
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