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Abstract
In this paper, a class of linear systems with multiple time delays is studied. The problem
of exponential stability of time-delay systems has been investigated by using Lyapunov
functional method. We will convert the system of multiple time delays into a single time
delay system and show that if the old system is stable then the new one is so. Then we
investigate the stability of converted new system, by using matrix decomposition and
linear matrix inequality (LMI) technique. Some numerical examples are given to illustrate
the efficiency of our method.
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Introduction

Time delays are often encountered due to measurment and computational delays,
transmission and transport lags. Frequently, it is a source of the generation of oscillation
and a source of instability in many biological and engineering systems. Therefore,
stability testing and stabilization of time-delay systems are problems of practical and
theoretical interest. Over the past years, considerable efforts have been devoted to the
analysis of the stability or stabilization of systems with time delays and many different
methods have been proposed to deal with the stability or stabilization problem, see for
example, [1, 10].

There are many different methods dealing with the exponential stability problem.
Among the well-known Lyapunov stability methods, the Lyapunov functional method is
a powerful tool for studying system stability, even for linear systems. Numerous works
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deal with the stability of linear systems using the Lyapunov function method [1]. Time-
delay stability conditions for time-invariant systems were formulated in both algebraic
Riccati equation and (LMI) [1,3,4,5]. Some stability conditions are directly obtained
from the eigenvalues or the robust stability conditions in terms of matrix measures and
norm criteria [6], or in terms of the solution of some algebraic Riccati equations [7].

We provide an overview of two application problems, inverted pendulum systems
and angiogenesis models with discrete delays.
Example 1:( Inverted pendulum) Consider the inverted pendulum on a cart such as in
[14]. The physical structure is shown in Figure. 1 (which is taken from [14]). In this
system, a pendulum is attached to the side of a cart by means of a pivot which allows
the pendulum to showing in the xy-plane. A force F(t) is applied to the cart in the x
direction, with the purpose of keeping the pendulum balanced upright. We assume that
the pendulum is modeled as a thin rod. Then, applying Newton’s second law to the

linear and angular displacement, we arrive at the equations of motion for the system
2

(M +m)x+ex+mélcosd—ml o siné=F(t), 1)
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Figurel. A typical inverted pendulum fixed on a moving cart
A more convenient form of the equations is found by solving for x and @ from

equations (1) and (2). Introducing the variables

y:(y]_’yZ’yS’y4)T :(X!0! X,O)T, (3)
with the delay h, it follows from [13] that the system can be rewritten in the form of
y(t) = Ay(t) + By(t —h), 4)
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Tablel. Notation of Example 1

X(t) | Displacement of the center of mass of the cart from point O

O(t) | Angle the pendulum makes with the top vertical

M Mass of the cart

m Mass of the pendulum

L Length of the pendulum

| Distance from pivot to the center of mass of the pendulum | = E
P

Pivot point of the pendulum

F(t) | Force applied to the cart

where
0 0 10 0 0 0 O
0 0 01 0 0 0 O
A: ,B: )
0¢c c O e e € &g
0 cggc O & € € &
.- -3mg c _3(B+e¢) c _3(m+M)g = 3(B+e)
Fom+4M)” T (m+4M)T T I(m+4M) T T I(m+4M)
ei:4—di, izl,..,4, ei:i! i:5!"!8!
(m+4M) I(m+4M)

And B,¢ are constant numbers.

Example 2: (Angiogenesis models with discrete delays) consider a family of models
with delays describing the process of angiogenesis that is a physiological process
involving the growth of new blood vessels from pre-existing ones. This family includes
the well- known models of tumor angiogenesis proposed by Hahnfeldt et al. and Ergun
et al. and is based on the Gompertz type of the tumor growth [15].

We consider the following system of differential equations with two discrete time
delays describing the process of tumor angiogenesis

g PO =PI, 6

Saw =aopET h))“ (1), 6

q(t —h,)
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where p(t) and q(t) denote tumor volume and the density of endothelial cells at time
t, respectively. We follow the Hahnfeldt et al. assumption in [15] that the tumor volume
dynamics, described by Eq. (5), is governed by the Gompertz-type equation for which
the carrying capacity of tumor cells is proportional to the density of endothelial cells. Eq
(6) describes the dynamics of endothelial cells which depends on the stimulation
process initiated by poorly nourished tumor cells, vessels lost due to the accumulation
of the inhibiting factors secreted by tumor cells within the tumor [15]. Then from [15],

the system can be rewritten in the form of

d

ax(t) =—rx(t—h)—y(t—h)), (7
d a(x(t-hy)-y(t-h, %X(t)
5 YO =be IO —(b—p)ed T — 1 8)

To close the system (7)-(8) we define an initial condition, that is a continuous function
¢:[-h,0] — R*where h=max{h :i=12}.
The linearization of Eq (7)-(8) it follows from [15] that the system can be rewritten in

form of
2(t) = Abz(t)+ZAZ(t—hi)), (9)

where
z(t) = (x(t), y(©))-

In this paper we will convert a system of multiple time delays into a single time
delay system and show that if the old system is stable, then the new one is so. Then we
will consider the exponential stability problem for linear systems with single delay,
based on the Lyapunov-Kradovskii functional approach and (LMI). Numerical examples

are given to illustrate the efficiency of our method.

Preliminaries
In this section we state definitions and the required mathematical background, as
well as the class of systems considered throughout the paper. First we introduce some
elementary definitions and lemmas which play an important role in the proof of the
main results.

We consider the following linear systems with multiple time delays, described by
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X(t) = AX(t)+ D Ax(t-h), teR", (10)
i=1
X(t) = ¢(t) ) te [—h,O],

where  h=max{h :i=12,...m}AeM™,i=012,..,m,  are constant and
#(t) eC ([-h,0],R"), C([-h,0],R") denotes the Banach space of all piecewise-
continuous vector valued functions mapping [-h,0] into R".

Definition 1 [8] The system (10) is said to be exponentially stable with decay rate «, if

there is a function 7:R" — R" such that for each ¢(t) e C([-h,0],R"), the solution X (
t,¢) of the system satisfies [x(t, §)| < 7(|A)e ™, forall teR".

Define the operator D(x,):C([-h,0],R") -> R" as
t
D(x,) = X(t) + G, L_h X(s)ds, (12)
where X (s)=x(t+s), and G, e R™" is a constant matrix. We have the following fact
about D(x,).

Lemma 1 [11] The operator (11) is stable if there exist a scalar 0< ¢ <1 and positive

—oM hGgM
<0
hMTGO -M

symmetric M such that

Lemma 2 [11] Assume that SeM™" is a symmetric positive definite matrix. Then for
every QeM™ and X,y eR’

2<Qy, x)—(Sy,y) < <QS’l Q"X X).
Lemma 3 [12] Let P,Q,S € M™" be given matrices such that S>0and S=S". Then

P Q<O P +QS™'Q<0
Qo s <P +QSTQ<0.

Lemma 4 [12] Suppose U and V are real symmetric matrices with U >0and V >0.
Then

UsV oA (U <la i U AVU72)<l
where A« IS maximal eigenvalues of a symmetric matrix.

Lemma 5 [12] Suppose U and V are real symmetric matrices with U >0and V >0.
Then there is a positive number & such that —U +oV <0.
Lemma 6 [12] Suppose U and V are real symmetric matrices with U >0and V >0

and a is a positive number. Then
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1

au>Veoi, (Wh<as AW(U_%VU_5)<a.
Two problems are considered in the rest of this paper. First, it is shown that if the
system (10) is stable then the system (13) is so. Second, stability of linear system with
single delay will be presented.

Theorem 1 [16] System (10) is uniformly asymptotically stable independent of delay if
H(A) +Zl:||'°x|| <0. (12)
Considering the time delay system described by (10), the matrices A,i=12,...,n, are

converted to diagonal form and subtract & > 0from each diagonal entry. we choose the
matrix with maximum norm which is denoted by G, . The remaining matrix is denoted

by B, . Therefore from system (10) we have
X(t) = AX(t)+(G, +mB_)x(t—h), te R, (13)
x(t) = ¢(t), t €[-h,0],
where the matrix functions A, (G, +mB,) are constant matrices and B = (G, + mB,).

Remark 1: To show the stability of the system (13), consider the time delay system
described by (10). Then the matrices A,i=12,...,n,are converted to diagonal form and

subtracting ¢ >0from each diagonal entry, we assume that the system with multiple
time delay is stable and satisfies (12). We convert the system with multiple time delays
to a stable system with single time-delay (13). Then, we know
IG, + mB, | <|G,||+m|B,| <[G.|+|GC..|+--|Cn
and using Theorem 1 we have

H(A)+[G, +mB,

+m

B,

<0.

<u(A)+ YAl = u(A)+ |G, +m8,

Hence system (13) is uniformily asymptotically stable independent of delay and we get

the result.

Main results
In this section, exponential stability with decay rate « criterion for system (13) is

derived by using Lyapunov functional and LMI approach.

Theorem 2 For delay time h >0, system(13) is exponentially stable with decay rate
a, if there exists symmetric and positive-definite matrices P > 0,Q > 0 such that the

following LMIs hold:
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-1 he*BT
<0, 14
(he““B I ] =

AP+PA+hQ he®A PB
[ TPA+TIQ J<o, (15)

he*"BTPA —hQ
where A= B, +Be™".

Proof. Consider the time delay systems (13) and use the following transformation:
y(t) =e"x(t),
where « >0 is the stability degree. To transform (13) to

y(t) = Byy(t) +e“By(t—h), (16)
where B, = A, +al,consider the following Lyapunov- Krasovskii functional

candidate :

Vy®)= D' (yOPDYm)+[ [y (0)Qy(p)d s, (17)
where D(y (t)) =y (t)+j:7he“hBy (s)ds.
Therefore we have

D(y(t)) = y(t) +e“"By(t) —e“"By(t —h)
=B,y (t)+e“'By (t —h)+e“"By (t)—e“"By (t —h) = (B, +e“"B)y (t).

Taking the time derivative of the Lyapunov functional along the trajectory of system
(16), we have

V(y(®) =D PD+D'PD+y ()hQy(®)- [, y(5)'Qy(s)ds = (Ay(®) P(y(t) +

[, Be™y(s)ds)+(y @)+ [ Bey(s)ds) PAy (t)+y ) hQy ()
[y Qy(s)ds

= y(®) (A P+ PA+hQ)y(t) +2y(t)’ A' P [ Be™y(9)ds— [ y(s)'Qy(s)ds.  (18)
By assuming 2ab <a'Q 'a+b'Qb, we have
2y() A P jt t_I?e““y(s)ds <y () he*"A PBQ'BTPAY (t)+ L t_h y(5) Qy (s)ds. (19)
Hence, we obtain V (y(t)) < y(t)" S,y(t), where
S, =A P+PA+he* A PBQB"PA+hQ. (20)
Finally, using the Schur Complements, one can easily observe that condition (15) of

Theorem 1 guaratees V(y(t)) <0.
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We have V(x(t))<0 if S, <0, while S,<0 if and only if condition (15) holds.

Therefore, system (13) is exponentially stable with decay rate « .

Illustrative examples

Example 3. Consider the linear delay system (10), where
m=2, h=05h,=1 h=1

A = -2 1 A- 01 0 A - 005 O
-2 -4) o o01) L0 005)
with ¢ =0.8 and & =0.01. Then the matrices A, A, are converted to diagonal form and

subtracting ¢ > 0from each diagonal entry. We choose the matrix with maximum norm
which is denoted by G, . The remaining matrix is denoted by B_, where

0.09 0 001 0
G, = , B,= .
( 0 o.ogJ ’ ( 0 o.oJ

Therefore from system (10) we have
X(t) = AX(t)+(G, +mB,)x(t—h), t e R,
X(t) = o(t), te[-h,0],

where the matrix functions A, (G, + mB,) are constant matrices. Let us set

B=(G, +mB,),

B,=A +al,

A=B, + Be™.

Applying condition (15) Theorem 2, with Q=1 then we have a positive definite

solution

o_ 0.21 0.049
- 10.049 0.1075/

According Theorem 2, the system is 0.8-stable. This system is 0.5-stable by [12]. The
stability of the system depends on &. When the positive number & decreases we obtain
an improvement of the result.

Example 4. Consider the linear delay system

X(t) = AX()+ AX(t—1) + Ax(t—+3), t>0,
x(t) =4(t), te[-3,0],

(-7 -1 (101 142 (52 -62
%_(0.5 —5.5} Al_(—a.a —10.2]’ AZ_(B.G 5.1 )

where
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with ¢ =0.7 and & =0.01. Then the matrices A, A, are converted into diagonal form

and subtracting & > 0from each diagonal entry. We choose the matrix with maximum
norm which is denoted by G, . The remaining matrix is denoted by B, we have

-0227 O 001 O
G, = , B, = .
¢ 0 0.265 ‘ 0 001

Therefore from system (10) we have
X(t) = AX(t)+ (G, +mB,)x(t—h), t e R,
X(t) = (1), t e[, 0],

where the matrix functions A, (G, + mB,) are constant matrices. Let us set

B=(G, +mB,),

B,=A +al,

A=B, + Be™".

Applying condition (15) Theorem 2 with Q =1, we have

1 0
P= .
o 21

According to Theorem 2, the system is 0.7-stable. This system is 0.09-stable by
[8].

Conclusion

In this brief we converted a system of multiple time delays into a single time delay
system and showed that if the old system is stable, then the new one is so. Then we
consider the exponential stability problem for linear systems with single delay, based on
the Lyapunov-Kradovskii functional approach and (LMI). Numerical examples show
the effectiveness of theoretical results.
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