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Abstract 

In this paper, a class of linear systems with multiple time delays is studied. The problem 

of exponential stability of time-delay systems has been investigated by using Lyapunov 

functional method. We will convert the system of multiple time delays into a single time 

delay system and show that if the old system is stable then the new one is so. Then we 

investigate the stability of converted new system,  by using matrix decomposition and 

linear matrix inequality (LMI) technique. Some numerical examples are given to illustrate 

the efficiency of our method.  

   Keywords: Exponential  stability,  Multiple time-delays  system,  Matrix  decomposition,  Lyapunov-

Krasovskii  functional, LMI 

 

Introduction 

Time delays are often encountered due to measurment and computational delays, 

transmission and transport lags. Frequently, it is a source of the generation of oscillation 

and a source of instability in many biological and engineering systems. Therefore, 

stability testing and stabilization of time-delay systems are problems of practical and 

theoretical interest. Over the past years, considerable efforts have been devoted to the 

analysis of the stability or stabilization of systems with time delays and many different 

methods have been proposed to deal with the stability or stabilization problem, see  for 

example, [1, 10].  

There are many different methods dealing with the exponential stability problem. 

Among the well-known Lyapunov stability methods, the Lyapunov functional method is 

a powerful tool for studying system stability, even for linear systems. Numerous works 
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deal with the stability of linear systems using the Lyapunov function method [1]. Time-

delay stability conditions for time-invariant systems were formulated in both algebraic 

Riccati equation and (LMI) [1,3,4,5]. Some stability conditions are directly obtained 

from the eigenvalues or the robust stability conditions in terms of matrix measures and 

norm criteria [6], or in terms of the solution of some algebraic Riccati equations [7].  

We provide an overview of two application problems, inverted pendulum systems 

and angiogenesis models with discrete delays. 

Example 1:( Inverted pendulum) Consider the inverted pendulum on a cart such as in 

[14]. The physical structure is shown in Figure. 1 (which is taken from [14]). In this 

system, a pendulum is attached to the side of a cart by means of a pivot which allows 

the pendulum to showing in the xy-plane. A force F(t) is applied to the cart in the x 

direction,  with the purpose of keeping the pendulum balanced upright. We assume that 

the pendulum is modeled as a thin rod. Then, applying Newton’s second law to the 

linear and angular displacement, we arrive at the equations of motion for the system 
2.. . .. .

( ) cos sin ( ),M m x x m l ml F t                                           (1) 
.. ..

24
cos sin 0.

3
ml x ml mgl                                                      (2) 

 
Figure1. A typical inverted pendulum fixed on a moving cart 

A more convenient form of the equations is found by solving for 
..

x  and 
..

  from 

equations  (1) and (2). Introducing the variables 

  1 2 3 4( , , , )Ty y y y y
 

. .

( , , , ) , (3)Tx x   

with the delay  h, it follows from [13] that the system can be rewritten in the form of 

   

.

( ) ( ) ( ), (4)y t Ay t By t h  
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Table1. Notation of Example 1 

( )x t  Displacement of the center of  mass of  the cart from point O 

( )t  Angle the pendulum makes with the top vertical  

M   Mass of the cart 

 

m  
Mass of the pendulum 

L  Length of the pendulum 

l  Distance from pivot to the center of mass of the pendulum 
2

L
l   

P
 

 
Pivot point of the pendulum 

( )F t  Force applied to the cart 

 where 
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And β,ε are constant numbers. 

Example 2: (Angiogenesis models with discrete delays) consider a family of models 

with delays describing the process of angiogenesis that is a physiological process 

involving the growth of new blood vessels from pre-existing ones. This family includes 

the well- known models of tumor angiogenesis proposed by Hahnfeldt et al. and Ergun 

et al. and is based on the Gompertz type of the tumor growth [15]. 

  We consider the following system of differential equations with two discrete time 

delays describing the process of tumor angiogenesis 

1

1

( )
( ) ( ) ln( ),

( )

p t hd
p t rp t

dt q t h


 

                                                        (5)
 

2

2 3

2

( )
( ) ( )[ ( ) ( ) ],

( )

p t hd
q t q t b ap t

dt q t h

 


  
                                            (6)  
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where p(t) and q(t) denote tumor volume and the density of endothelial cells at time 

t, respectively. We follow the Hahnfeldt et al. assumption in [15]  that the tumor volume 

dynamics, described by Eq. (5), is governed by the Gompertz-type equation for which 

the carrying capacity of tumor cells is proportional to the density of endothelial cells. Eq 

(6) describes the dynamics of endothelial cells which depends on the stimulation 

process initiated by poorly nourished tumor cells, vessels lost due to the accumulation 

of the inhibiting factors secreted by tumor cells within the tumor [15]. Then from [15],  

the system can be rewritten in the form of 

1 1( ) ( ) ( )),
d

x t rx t h y t h
dt

    
                                                   (7) 

2 2

2
( )

( ( ) ( )) 3( ) ( ) .
x t

x t h y t hd
y t be b e

dt

    
   

                                    (8)
 

To close the system (7)-(8) we define an initial condition, that is a continuous function 

2:[ ,0]h   where max{ : 1,2}.ih h i   
  

 

The linearization of Eq (7)-(8) it follows from [15] that  the system can be rewritten in 

form of 
2.

0

1

( ) ( ) ( )),i i

i

z t A z t A z t h


                                             (9) 

where 

 ( ) ( ( ), ( )).z t x t y t  

  In this paper  we will convert a system of multiple time delays into a single time 

delay system and show that if the old system is stable, then the new one is so. Then we 

will consider the exponential stability problem for linear systems with single delay, 

based on the Lyapunov-Kradovskii functional approach and (LMI). Numerical examples 

are given to illustrate the efficiency of our method. 

 

 Preliminaries 

In this  section we state definitions and the  required mathematical background, as 

well as the class of systems considered throughout the paper. First we introduce some 

elementary definitions and lemmas which play an important role in the proof of the 

main results. 

  We consider the following linear systems with multiple time delays, described by 
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.

0

1

( ) ( ) ( )
m

i i

i

x t A x t A x t h


   ,   ,t              (10) 

)()( ttx  ,   ],0,[ ht   

where max{ : 1,2,..., }, n r

i ih h i m A M    , 0,1,2,..., ,i m  are constant and 

( ) ([ ,0], ),nt C h   ([ ,0], )nC h  denotes the Banach space of all piecewise-

continuous vector valued functions mapping [ ,0]h  into n . 

Definition 1 [8]  The system (10) is said to be exponentially stable with decay rate ,  if 

there is a function : n n   such that for each ( ) ([ ,0], ),nt C h    the solution x (

t , )  of the system satisfies ,)(),( teAtx    for all t  . 

 

Define the operator ( ) : ([ ,0], )n n

tD x C h   as  

0( ) ( ) ( ) ,
t

t
t h

D x x t G x s ds


                                      (11) 

 where ( ) ( ),tx s x t s   and 
0

n nG   is a constant matrix. We have the following fact 

about ( )tD x . 

Lemma 1 [11] The operator (11) is stable if there exist a scalar 0 1   and positive 

symmetric  M such that 

0

0

0
T

T

M hG M

hM G M

 
 

  . 

Lemma 2  [11]  Assume that 
n nS M   is a symmetric positive definite matrix. Then for 

every 
nnMQ   and  , nx y  

12 , , , .TQy x Sy y QS Q x x   

Lemma 3  [12] Let nnMSQP ,,  be given matrices such that 0S  and TSS  . Then  










 SQ

QP
T

0 P  + QQS 1 <0.  

Lemma 4  [12] Suppose U  and V  are real symmetric matrices with 0U and  0.V   

Then  
1 1

1 2 2
max max( ) 1 ( ) 1,U V VU U VU 

     
 

 
where      is maximal eigenvalues of a symmetric matrix. 

Lemma 5  [12] Suppose U  and V  are real symmetric matrices with 0U  and 0.V   

Then there is a positive number   such that .0 VU   

Lemma 6  [12] Suppose U  and V  are real symmetric matrices with U > 0 and 0V

and a  is a positive number.  Then 
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  aVUVaU )( 1

max .)( 2

1

2

1

max aVUU 


  

Two problems are considered in the rest of this paper. First, it is shown that if the 

system (10) is stable then the system (13) is so. Second, stability of linear system with 

single delay will be presented. 

Theorem 1 [16] System (10) is uniformly asymptotically stable independent of delay if 

0

1

( ) 0.
m

k

i

A A


                                                     (12) 

Considering the time delay system described by (10), the matrices , 1,2,..., ,iA i n
 
are 

converted to diagonal form and subtract 0  from each diagonal entry.  we choose the 

matrix with maximum norm which is denoted by
  

G . The remaining matrix is denoted 

by
 
B  . Therefore from system (10) we have 

 
.

0( ) ( ) ( ) ( )x t A x t G mB x t h     , ,t                                  (13) 

)()( ttx  , [ ,0]t h  , 

where the matrix functions 0 , ( )A G mB   are constant matrices and ( ).B G mB  
 

Remark 1: To show the stability of the system (13), consider the time delay system 

described by (10). Then the matrices , 1,2,..., ,iA i n are converted to diagonal form and 

subtracting 0  from each diagonal entry, we assume that the system with multiple 

time delay is stable and satisfies  (12). We convert the system with multiple time delays  

to a stable system with single time-delay (13). Then, we know 

1 2 ... ,mG mB G m B G G G m B               

and using Theorem 1 we have 

0 0 0

1 1

( ) ( ) ( ) 0.
m m

i i

i i

A G mB A A A G mB     
 

          

Hence system (13) is uniformily asymptotically stable independent of delay and we  get 

the result.  

 

Main results 

In this section, exponential stability with decay rate   criterion for system (13) is 

derived by using Lyapunov functional and LMI approach.  

Theorem 2  For delay time 0h , system(13) is exponentially stable with decay rate 

,  if there exists symmetric and positive-definite matrices 0,0  QP such that the 

following LMIs hold:  
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0,
h T

h

I he B

he B I





 
 

 
                                                     (14) 

0,

T Th

h T

A P PA hQ he A PB

he B PA hQ





  
  
  

                                    (15) 

where 
0 .hA B Be   

Proof. Consider the time delay systems (13) and use the following transformation:  

                                                   ),()( txety t  

where 0  is the stability degree. To transform (13) to  
.

0( ) ( ) ( ),ty t B y t e By t h                                                   (16) 

where ,00 IAB  consider  the  following  Lyapunov- Krasovskii functional 

candidate :  

))(( tyV   
0

( ( )) ( ( )) ( ) ( ) ,
t

T T

h t s
D y t PD y t y Qy d ds  

 
                    

(17) 

where ( ( )) ( ) ( ) .
t

h

t h
D y t y t e By s ds


    

Therefore we have 
. .

( ( )) ( ) ( ) ( )h hD y t y t e By t e By t h      

0 ( ) ( ) ( ) ( )h h hB y t e By t h e By t e By t h        0( ) ( ).hB e B y t   

Taking the time derivative of the Lyapunov functional along the trajectory of system 

(16), we have 

. . .

( ( )) ( ) ( )
T

T TV y t D PD D P D y t hQy t      )(())(()()( tyPtyAdssQysy T
t

ht

T  

( ) ) ( ( )
t

h

t h
Be y s ds y t


  ( ) ) ( ) ( ) ( )

t
h T T

t h
Be y s ds P Ay t y t hQy t




( ) ( )
t

T

t h
y s Qy s ds


  

)()()( tyhQAPPAty
TT  2 ( ) ( ) ( ) ( ) .

t tTT h T

t h t h
y t A P Be y s ds y s Qy s ds

 
           

(18) 

By assuming ,2 1 QbbaQaab TT    we have  

  dssyBePAty
t

ht

hTT )()(2  2 1( ) ( ) ( ) ( ) .
tTT h T T

t h
y t he A PBQ B P Ay t y s Qy s ds 


     

(19) 

Hence, we obtain 
.

1( ( )) ( ) ( ),TV y t y t S y t  where   

.12

1 hQAPBPBQAheAPPAS TThT

 
                      (20) 

 Finally, using the Schur Complements,  one can easily observe that condition (15) of 

Theorem 1 guaratees 
.

( ( )) 0.V y t   
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 We have 
.

( ( )) 0V x t   if 01 S , while 01 S  if and only if condition (15) holds. 

Therefore, system (13) is exponentially stable with decay rate  . 

 

Illustrative examples 

Example 3. Consider the linear delay system (10), where 

,2m  ,5.01 h ,12 h ,1h  

,
42

12
0 












A

        

,
1.00

01.0
1 








A

        










05.00

005.0
2A , 

with 0.8   and 0.01.   Then the matrices 1 2,A A are converted to diagonal form and 

subtracting 0  from each diagonal entry. We choose the matrix with maximum norm 

which is  denoted by
 
G . The remaining matrix is denoted by

  
B  , where 

,
09.00

009.0








G     

0.01 0
.

0 0.01
B

 
  
 

 

Therefore from system (10) we have 
.

0( ) ( ) ( ) ( ),x t A x t G mB x t h     ,t   

( ) ( ),x t t [ ,0],t h   

where the matrix functions )(,0  mBGA   are constant matrices. Let us set  

),(  mBGB   

,00 IAB   

.0

hBeBA   

Applying condition (15) Theorem 2, with IQ   then we have a positive definite 

solution 

.
1075.0049.0

049.021.0








P  

According  Theorem  2, the system is 0.8-stable. This system is 0.5-stable by [12]. The 

stability of  the system depends on .  When the positive number   decreases we obtain 

an improvement of the result. 

Example 4. Consider the linear delay system  
.

0 1 2( ) ( ) ( 1) ( 3)x t A x t A x t A x t     ,   0t , 

)()( ttx  ,   ],0,3[t  

where  

,
5.55.0

17
0 












A

       

 ,
2.106.6

2.141.10
1 










A

  

      ,
1.56.3

2.62.5
2 







 
A   
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with 0.7   and 0.01.   Then the matrices 1 2,A A are converted into diagonal form 

and subtracting 0  from each diagonal entry.  We choose the matrix with maximum 

norm which is denoted by
 
G . The remaining matrix is denoted by

  
B  , we have 

,
265.00

0227.0








G

     

 
0.01 0

.
0 0.01

B

 
  
   

Therefore from system (10) we have 
.

0( ) ( ) ( ) ( ),x t A x t G mB x t h     ,t   

( ) ( ),x t t [ ,0],t h   

where the matrix functions )(,0  mBGA   are constant matrices. Let us set  

),(  mBGB   

,00 IAB   

.0

hBeBA   

Applying condition (15) Theorem 2  with ,Q I we have 

.
421.20

01








P  

According to Theorem 2, the system is 0.7-stable. This system is 0.09-stable by 

 [8]. 

 

Conclusion 

In this brief we  converted a system of multiple time delays into a single time delay 

system and showed that if the old system is stable, then the new one is so. Then we 

consider the exponential stability problem for linear systems with single delay, based on 

the Lyapunov-Kradovskii functional approach and (LMI). Numerical examples show 

the effectiveness of theoretical results. 
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