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Abstract

In this paper, a variational iteration method (VIM), which is a well-known method for
solving nonlinear equations, has been employed to solve an inverse parabolic partial
differential equation. Inverse problems in partial differential equations can be used to model
many real problems in engineering and other physical sciences. The VIM is to construct
correction functional using general Lagrange multipliers identified optimally via the
variational theory.This method provides a sequence of function which converges to the
exact solution of the problem. This technique does not require any discretization,
linearization or small perturbations and therefore reduces the numerical computations a lot.

Numerical examples are examined to show the efficiency of the technique.

Introduction

Parabolic systems appear naturally in a number of physical and engineering settings,
in particular in hydrology, material sciences, heat transfer, combustion systems, medical
imaging and transport problems. Usually the function that characterizes a certain
property of the system is unknown, and the interest is to identify the unknown function
based on some time dependent measurements, which leads to an inverse problem for a
parabolic system. A number of investigators have considered such problems for various
applications using different methods [1], the reader can refer to [2-6].

In this paper, we solve an inverse semilinear parabolic problem using the VIM. The
method is capable of reducing the size of calculations and handles both linear and non-
linear equations, homogeneous or inhomogeneous, in a direct manner. The method
gives the solution in the form of rapidly convergent successive approximations that may

give the exact solution if such a solution exists. For concrete problems where exact
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solution is not obtainable, it was found that a few numbers of approximations can be
used for numerical purposes. The VIM is a powerful tool to searching for approximate
solutions of nonlinear equation without requirement of linearization or perturbation.
This method, which was first proposed by He [7, 8] in 1998, has been proved by many
authors to be a powerful mathematical tool for various kinds of non-linear problems
[9-12].

The rest of this paper is organized as follows: In Section 2, we introduce an inverse
semilinear parabolic problem and transform it into a direct linear parabolic problem. In
Section 3, the variational iteration method is reviewed. In Section 4, application of the
VIM is presented to solve the discussed inverse problem. In Section 5, several
numerical examples are presented to confirm the accuracy and efficiency of the new

method and finally a conclusion is presented in Section 6.

Statement of the problem

Consider the semilinear parabolic equation:
u, (X, t) =u, (X, t) + pu(x,t) + f (x,t); O<x<l, O<t<T, 1)

with unknown coefficient p(t) in a domain Q; ={(xt):0<x<1,0<t<T}. Impose the

initial and boundary conditions:

u(x,0) =u,(x); 0<x<1], 2
u,(0,t) =g, (t); 0<t<T, 3)
Bu@t)=g,(t); O0<t<T, 4)
and subject to an extra measurement:
j:(” uotdx=E(t): 0<s(t)<L0<t<T, )
where T >0 is final time, B is boundary operator (i.e. B :ai—li;i =0or1)and f, u,

, 0, 0;, S and E #0 are known functions.

The existence and uniqueness to some kind of these inverse problems are discussed
in [13, 14, 20]. Certain types of physical problems can be modeled by (1)—(5). For
example, if u represents a temperature distribution, then (1)—(5) can be interpreted as

the control problem with source parameter. We want to identify the control function
p(t) that will yield a desired energy prescribed in a portion of the spatial domain. The
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applications of these inverse problems and some other similar parameter identification
problems are discussed in [15, 20].
In order to solve the above problem by using VIM, we require transforming the

problem with only one unknown function as follows [16]:
t
r(t)=ex|0{—f0 p(s)ds}, w (x,t) =u(x,t)r(t). (6)

Thus, we have:

w(x.t) o(t) = —r'(t)

u(x,t) = 0 "0 (7
We reduce the original inverse problem (1)-(5) to the following auxiliary direct
problem:
W, (X,t) =w,, (x,t) +r(t) f (x,1); O<x<1l O<t<T, (8)
w (x,0) =u,(X); 0<x <], €)]
w, (0,t)=r(t)g,(t); 0<t<T, (10)
Bw (@t)=r(t)g,(t); 0<t<T, (11)
subject to:
js(t) w(X,t)dx
rf)==>———;  0<s(t)<l,0<t<T. (12)

E(t)
It is easy to show that the original inverse problem (1)-(5) is equivalent to the

auxiliary direct problem (8)-(12).

Variational iteration method
To illustrate the basic idea of the method, we consider the following general non-
linear differential equation:
Lu(t)+Nu()=f (t), (13)
where L and N are linear and nonlinear operators, respectively, and f is source or
sink term. We can construct a correction functional as follows:

U ®) =u, ©)+ [ 20,2, () +NT, () ~f ()} 7 n 20, (14)

where 1 is general Lagrange multiplier [17], which can be identified optimally via the

variational theory [7-9, 18]. The subscript N denotes the Nth order approximation and
U, is the restricted variation so that its variation is zero which means o, =0. By this

method, it is firstly required to determine the Lagrange multiplier A that will be
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identified optimally via integration by part. Assuming u,(t) is the solution of Lu =0,

the successive approximation u_,(t); n>0, of the solution u(x,t)will be readily

obtained upon using the determined Lagrange multiplier and any selective function
U, (t). Consequently, the solution is given by u =Ilimu_, because we will rewrite
Equation (14) in the operator form as follows:
un+l(t) = A[un]:
where the operator A takes the following form:
A[u(t)]=u(t)+JZ At, 2){Lu () +Nu()-f ()M z.
Theorem Let (X ,|[) be a Banach space and A:X —X be a nonlinear mapping and
suppose that:
A=A <yfu-u|, ugeX,
for some constant » . Then, A has a unique fixed point. Furthermore, the sequence (14)
using VIM with an arbitrary choice ofu, € X , converges to the fixed point of A and

n-2 )
o, U<l v Y 7.

j=m-1
Proof: A complete proof is given by Tatari and Dehghan [19].

According to the above theorem, a sufficient condition for the convergence of the
variational iteration method is strictly contraction of A Furthermore, the sequence (14)
converges to the fixed point of A, which is also the solution of the equation (13). Also,
the rate of convergence depends on » .

For variational iteration method, the key is the identification of the Lagrangian
multiplier. For linear problems, its exact solution can be obtained by only one iteration
step due to the fact that, no non-linear exists so the Lagrange multiplier can be exactly
identified. For nonlinear problems, the Lagrangian multiplier is difficult to be identified
exactly. To overcome the difficulty, we apply restricted variations to nonlinear terms.
Due to the approximate identification of the Lagrangian multiplier, the approximate
solutions converge to their exact solutions relatively slowly. It should be specially
pointed out that the more accurate the identification of the multiplier, the faster the

approximations converge to their exact solutions.
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Application
In this section, the variational iteration method is used for solving the problem (8)-
(12). If the VIM is applied to equation (8), the correction functional is derived in the
first place:
W, (X, 1) =w, (x,t) +I;l(t, o{w, (X, 7)-W, (X, 7)—r(t) f(x,7)}dz; n>0.

Making the above correction functional stationary, we have:
oW, (X, 1) = oW, (X, 1) + 5_[; At oW, (X, 7) =W, (X, 7) —r(t) f (X, 7)}dz; n>0,

and it follows that:
W, , (%) = 6w, (1) + 5[ Alt, ), (x, )}z, n20.

Note that ow, (x,0) =0, oW, (x,) =0 andJ f (x,t) =0. Thus, its stationary condition can

be obtained as follows:
A'(t,7) =0,
1+ A(t,7)|._,=0.

Therefore A(t,z) =—1. And the following iteration formula can be obtained:
W ., (x ,t)=Wn(x,t)—j;{/vm(x,r)—wnXX (x,7)—r(o)f (x,7)}dz; n>0. (15)
For sufficiently large values of N we can consider u, as an approximation of the

exact solution. According to Adomian's decomposition method in t-direction which is
equivalent to the VIM in t- direction [19], we choose its initial approximate solution
W, (x,t) =w(x,0) . Having w(x,t) determined, then u(x,t)and p(t) can be computed
by using equation (7).
Test examples
In this section the theoretical considerations introduced in the previous sections will
be illustrated with some examples. These tests are chosen such that their analytical
solutions are known. But the method developed in this research can be applied to more
complicated problems. The numerical implementation is carried out in microsoft
Maplel3.
Example 1: This example is solved in [20] by using the finite difference scheme. Solve
the following inverse problem:
u, (1) =u, (X,t) + pt)u(x,t) + (z* + 2t)e’ cos(zx) + 2e'xt;  0<x<l0<t<l,
u(x,0) = x+cos(zx); 0<x<1,
u, (0,t) =¢'; 0<t<i,
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0<t<]

The true solution is u(x,t)=e'(x+cos(zx)) while p(t)=1-2t.

w(x,0) = x+cos(zx);by using the given initial value and from equations (15).
According to (15), one can obtain the successive approximations w, (x,t) of w(x,t) as

follow: w, (x,t) = (X +cos(7X)) +t>(x+cos(zx)),

4

0<t<1.

We can select

W, (X, 1) = (X +cos(7zX)) + t*(x +cos(zX)) + % (x+cos(zx)),

4

6

W, (X, 1) = (X +Ccos(zX)) +t? (X +cos(7X)) +% (x+cos(zx)) + % (x +cos(7zx)).

The rest of the components of iteration formula (15) are obtained by using the Maple
Package. Now from (12), we can obtain the successive approximations r. (t) of r(t) as:

r(t) = [ w06

E(t)

Finally, using (7), we can obtain the successive approximations u,(x,t) ofu(x,t) and

p, (t) of p(t) as following:

w, (x.t)

(0

Un(X,t)Zr—(t), p(t)=—22

The obtained numerical results are summarized in Tables 1 and 2. In addition, the
graphs of the error functions |u—u, | and | p— p,, |are plotted in Figure 1.

(1)

Tablel. The comparison between exact, FDM and VIM solutions for p(t)

t | Exactvalue p(t) | Frist method [20] | Second method [20] | vIM (n=5) | VIM (n=10)
0.1 0.8 0.7952548681 0.7987107476 0.7999999992 | 0.7999999997
0.2 0.6 0.5942632825 0.5987107476 0.6000000014 | 0.6000000007
0.3 0.4 0.3937116629 0.3985704513 0.4000000269 | 0.3999999995
0.4 0.2 0.1934449648 0.1984305834 0.2000000269 | 0.2000000002
0.5 0.0 -0.0065131634 | -0.0017537688 0.0000063377 | 0.0000000000
0.6 -0.2 -0.2061411572 | -0.2019831631 -0.199957814 | -0.199999997
0.7 -0.4 -0.4054351343 | -0.4022583261 -0.399798103 | -0.399999992
0.8 -06 -0.6044082700 | -0.6025801288 -0.599245056 | -0.599999983



http://dx.doi.org/10.29252/mmr.2.1.79
https://dor.isc.ac/dor/20.1001.1.25882546.1395.2.1.7.8
https://mmr.khu.ac.ir/article-1-2579-fa.html

[ Downloaded from mmr.khu.ac.ir on 2025-11-28 ]

An inverse problem of identifying the coefficient of semilinear parabolic equation |

Table2. The comparison between exact, FDM and VIM solutions for u(x,0.5)

X | Exact value Frist method [20] | Second method [20] | vIM (n=5) | VIM (n=10)
0.1 | 1.7328992351 | 1.7329861820 1.7284586563 1.7328992372 | 1.7328992351
0.2 | 1.6635877811 | 1.6636634535 1.6594361329 1.6635877833 | 1.6635877811
0.3 | 1.4637104292 | 1.4637691547 1.4600169103 1.4637104296 | 1.4637104292
0.4 | 1.1689713999 | 1.1690097460 1.1658643864 1.1689713999 | 1.1689713999
0.5 | 0.8243606353 | 0.8243778730 0.8219140414 0.8243606359 | 0.8243606353
0.6 | 0.4797498707 | 0.4797482318 0.4779764096 0.4797498713 | 0.4797498707
0.7 | 0.1850108414 | 0.1849955463 0.1838627812 0.1850108410 | 0.1850108414
0.8 | -0.0148665104 | -0.0148874533 -0.0154891066 -0.014866511 | -0.0148665104

207
1.5e-01

Telf

Se-08-

1] P i
|} . . : . 02 o4 06 Y 1 0.8 04
0 02 04 06 08 t X

a) Graph of | p(t) — p,(t) |

Figure 1. Graph of absolute error by using VIM for Example 1

b) Graph of |u(X,t) —u,,(X,t) |

Example 2: Consider the inverse problem (1)-(5) described by:

u,(x,t)=u, (x,t)+pt)u(x,t)—(sin(x) +cos(x));

O<x <1 0<t <],
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u(x,0) = (sin(x) + cos(x)); 0<x <1,
u (0,t)=e™; 0<t <1,
u, (@t)=e"(cos(l)—sinQ2)); o<t <1,
.[fu(x t)dx =—e™* (=1+cos(vt ) —sin(vt)); 0<t <1,

The true solution is u(x,t)=e"(sin(x)+cos(x)) whilep(t)=e'. The obtained

numerical results are summarized in Tables 3 and 4. In addition, the graphs of the error
functions |u —u,, | and | p — p,, | are plotted in Figure 2.
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Table3. Absolute errors of p, for Example 2

t |p_p6| |p_p8| |p—p1o| |p—p1o| |p—p12|
0.1 | 2.811E-4 | 1.456E-5 | 7.498E-7 | 1.382E-8 | 4.019E-10
0.2 | 2.739E-4 | 1.980E-5 | 8.349E-7 | 2.987E-8 | 7.479E-10
0.3 | 7.311E-4 | 1.452E-4 | 7.010E-6 | 1.009E-7 1.982E-9
0.4 | 4.023E-3 | 2.164E-4 | 2.992E-6 | 5.620E-8 | 9.312E-10
0.5 | 5.429E-3 | 3.982E-4 | 5.982E-6 | 2.845E-7 | 6.870E-9
0.6 | 3.498E-3 | 1.111E-4 | 5.111E-6 | 2.001E-7 | 4.165E-9
0.7 | 1.333E-3 | 1.109E-4 | 2.009E-7 | 6.194E-8 1.409E-9
0.8 | 1.098E-3 | 1.001E-4 | 1.101E-6 | 2.500E-8 | 1.010E-9

Table4. Absolute errors ofu, at t =0.5 for Example 2

X | ju-ug| | Ju-ug| | u—ugl| | Ju-uy| | |u-uy]

0.1 | 5.874E-5 | 7.410E-6 | 8.621E-8 | 6.993E-10 | 3.412E-12
0.2 | 4.098E-5 | 4.496E-6 | 6.982E-8 | 6.730E-10 | 1.960E-12
0.3 | 3.121E-5 | 2.196E-6 | 9.671E-9 | 1.100E-10 | 5.783E-13
0.4 | 3.309E-5 | 2.433E-6 | 1.010E-8 | 2.412E-10 | 6.628E-13
0.5 | 5.025E-5 | 3.982E-6 | 6.422E-8 | 5.681E-10 | 1.201E-12
0.6 | 3.649E-5 | 2.670E-6 | 1.145E-8 | 2.983E-10 | 8.881E-13
0.7 | 1.122E-5 | 8.333E-7 | 6.610E-9 | 7.091E-11 | 2.512E-13
0.8 | 8.751E-6 | 1.001E-7 | 3.370E-9 | 5.479E-11 | 1.200E-13

o9 3 5e 12
e 12

23¢9 2 5012
9009 212
15012

15e09 1e-12]
1E‘m' &13 |

Se-11H 0
0 p3 04
Iy T T T T o4 lnﬁ 0.8 1 08 X

0 02 04 i 06 08 1

a) Graph of [ p(t) — p,, (t)| b) Graph of [u(X,t)—U;,(X,t)]|

Figure2. Graph of absolute error by using VIM for Example 2
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