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Abstract 

In this paper, a variational iteration method (VIM), which is a well-known method for 

solving nonlinear equations, has been employed to solve an inverse parabolic partial 

differential equation. Inverse problems in partial differential equations can be used to model 

many real problems in engineering and other physical sciences. The VIM is to construct 

correction functional using general Lagrange multipliers identified optimally via the 

variational theory.This method provides a sequence of function which converges to the 

exact solution of the problem. This technique does not require any discretization, 

linearization or small perturbations and therefore reduces the numerical computations a lot. 

Numerical examples are examined to show the efficiency of the technique.  

 

Introduction 

Parabolic systems appear naturally in a number of physical and engineering settings, 

in particular in hydrology, material sciences, heat transfer, combustion systems, medical 

imaging and transport problems. Usually the function that characterizes a certain 

property of the system is unknown, and the interest is to identify the unknown function 

based on some time dependent measurements, which leads to an inverse problem for a 

parabolic system. A number of investigators have considered such problems for various 

applications using different methods [1], the reader can refer to [2-6].  

In this paper, we solve an inverse semilinear parabolic problem using the VIM. The 

method is capable of reducing the size of calculations and handles both linear and non-

linear equations, homogeneous or inhomogeneous, in a direct manner. The method 

gives the solution in the form of rapidly convergent successive approximations that may 

give the exact solution if such a solution exists. For concrete problems where exact 
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solution is not obtainable, it was found that a few numbers of approximations can be 

used for numerical purposes. The VIM is a powerful tool to searching for approximate 

solutions of nonlinear equation without requirement of linearization or perturbation. 

This method, which was first proposed by He [7, 8] in 1998, has been proved by many 

authors to be a powerful mathematical tool for various kinds of non-linear problems  

[9-12]. 

The rest of this paper is organized as follows: In Section 2, we introduce an inverse 

semilinear parabolic problem and transform it into a direct linear parabolic problem. In 

Section 3, the variational iteration method is reviewed. In Section 4, application of the 

VIM is presented to solve the discussed inverse problem. In Section 5, several 

numerical examples are presented to confirm the accuracy and efficiency of the new 

method and finally a conclusion is presented in Section 6. 

 

Statement of the problem 

Consider the semilinear parabolic equation: 

( , ) ( , ) ( ) ( , ) ( , ); 0 1, 0 ,t xxu x t u x t p t u x t f x t x t T                    (1) 

with unknown coefficient ( )p t  in a domain {( , ) :0 1,0 }TQ x t x t T     . Impose the 

initial and boundary conditions: 

0( ,0) ( ); 0 1,u x u x x                                                      (2) 

0(0, ) ( ); 0 ,xu t g t t T                                                      (3) 

1(1, ) ( ); 0 ,Bu t g t t T                                                      (4) 

and subject to an extra measurement: 
( )

0
( , ) ( ); 0 ( ) 1, 0 ,

s t

u x t dx E t s t t T                                      (5) 

where 0T   is final time, B  is boundary operator (i.e. ; 0 1
i

i
B i or

x


 


) and f , 0u

, 0g , 1g , s  and 0E   are known functions. 

The existence and uniqueness to some kind of these inverse problems are discussed 

in [13, 14, 20]. Certain types of physical problems can be modeled by (1)–(5). For 

example, if u represents a temperature distribution, then (1)–(5) can be interpreted as 

the control problem with source parameter. We want to identify the control function 

( )p t  that will yield a desired energy prescribed in a portion of the spatial domain. The 
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applications of these inverse problems and some other similar parameter identification 

problems are discussed in [15, 20]. 

In order to solve the above problem by using VIM, we require transforming the 

problem with only one unknown function as follows [16]: 

0
( ) exp{ ( ) }, ( , ) ( , ) ( ).

t

r t p s ds w x t u x t r t                                      (6) 

Thus, we have: 

( . ) ( )
( , ) , ( ) .

( ) ( )

w x t r t
u x t p t

r t r t


                                                     (7)  

We reduce the original inverse problem (1)-(5) to the following auxiliary direct  

problem:
 

( , ) ( , ) ( ) ( , ); 0 1, 0 ,t xxw x t w x t r t f x t x t T                (8) 

0( ,0) ( ); 0 1,w x u x x                                                     (9) 

  0(0, ) ( ) ( ); 0 ,xw t r t g t t T                                             (10) 

1(1, ) ( ) ( ); 0 ,Bw t r t g t t T                                           (11) 

subject to: 
( )

0
( , )

( ) ; 0 ( ) 1, 0 .
( )

s t

w x t dx
r t s t t T

E t
    


                                 (12) 

It is easy to show that the original inverse problem (1)-(5) is equivalent to the 

auxiliary direct problem (8)-(12). 

 

Variational iteration method 

To illustrate the basic idea of the method, we consider the following general non-

linear differential equation: 

( ) ( ) ( ),Lu t Nu t f t                                                 (13) 

where L  and N are linear and nonlinear operators, respectively, and f  is source or 

sink term. We can construct a correction functional as follows: 

1
0

( ) ( ) ( , ){ ( ) ( ) ( )} ; 0,
t

n n n nu t u t t Lu Nu f d n                             (14) 

where is general Lagrange multiplier [17], which can be identified optimally via the 

variational theory [7-9, 18]. The subscript n  denotes the n th order approximation and

nu is the restricted variation so that its variation is zero which means 0nu  . By this 

method, it is firstly required to determine the Lagrange multiplier that will be 
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identified optimally via integration by part. Assuming 0 ( )u t  is the solution of 0Lu  , 

the successive approximation
 1( )nu t ; 0,n   of the solution ( , )u x t will be readily 

obtained upon using the determined Lagrange multiplier and any selective function 

0 ( )u t . Consequently, the solution is given by lim n
n

u u


 , because we will rewrite 

Equation (14) in the operator form as follows: 

1( ) [ ],n nu t A u   

where the operator A  takes the following form: 

0
[ ( )] ( ) ( , ){ ( ) ( ) ( )} .

t

A u t u t t Lu Nu f d          

Theorem Let ( , . )X  be a Banach space and :A X X be a nonlinear mapping and 

suppose that: 

[ ] [ ] , , ,A u A u u u u u X     

for some constant  . Then, A  has a unique fixed point. Furthermore, the sequence (14) 

using VIM with an arbitrary choice of 0u X , converges to the fixed point of A  and 

2

1 0

1

.
n

j

n m

j m

u u u u 


 

     

Proof: A complete proof is given by Tatari and Dehghan [19]. 

According to the above theorem, a sufficient condition for the convergence of the 

variational iteration method is strictly contraction of .A Furthermore, the sequence (14) 

converges to the fixed point of A , which is also the solution of the equation (13). Also, 

the rate of convergence depends on  . 

For variational iteration method, the key is the identification of the Lagrangian 

multiplier. For linear problems, its exact solution can be obtained by only one iteration 

step due to the fact that, no non-linear exists so the Lagrange multiplier can be exactly 

identified. For nonlinear problems, the Lagrangian multiplier is difficult to be identified 

exactly. To overcome the difficulty, we apply restricted variations to nonlinear terms. 

Due to the approximate identification of the Lagrangian multiplier, the approximate 

solutions converge to their exact solutions relatively slowly. It should be specially 

pointed out that the more accurate the identification of the multiplier, the faster the 

approximations converge to their exact solutions. 
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Application 

In this section, the variational iteration method is used for solving the problem (8)-

(12). If the VIM is applied to equation (8), the correction functional is derived in the 

first place:  

1
0

( , ) ( , ) ( , ){ ( , ) ( , ) ( ) ( , )} ; 0.
t

n n n nxxw x t w x t t w x w x r t f x d n            

Making the above correction functional stationary, we have: 

1
0

( , ) ( , ) ( , ){ ( , ) ( , ) ( ) ( , )} ; 0,
t

n n n nxxw x t w x t t w x w x r t f x d n               

and it follows that:  

1
0

( , ) ( , ) ( , ){ ( , )} ; 0.
t

n n nw x t w x t t w x d n           

Note that ( ,0) 0nw x  , ( , ) 0nw x   and ( , ) 0f x t  . Thus, its stationary condition can 

be obtained as follows: 

( , ) 0,

1 ( , ) | 0.t

t

t 

 

  

 

   

Therefore ( , ) 1t    .

 

And the following iteration formula can be obtained: 

1
0

( , ) ( , ) { ( , ) ( , ) ( ) ( , )} ; 0.
t

n n n nxxw x t w x t w x w x r f x d n              (15)  

For sufficiently large values of n  we can consider nu  as an approximation of the 

exact solution. According to Adomian's decomposition method in t-direction which is 

equivalent to the VIM in t- direction [19], we choose its initial approximate solution

0( , ) ( ,0)w x t w x . Having ( , )w x t  determined, then ( , )u x t and ( )p t  can be computed 

by using equation (7). 

Test examples 

In this section the theoretical considerations introduced in the previous sections will 

be illustrated with some examples. These tests are chosen such that their analytical 

solutions are known. But the method developed in this research can be applied to more 

complicated problems. The numerical implementation is carried out in microsoft 

Maple13. 

Example 1: This example is solved in [20] by using the finite difference scheme. Solve 

the following inverse problem: 
2 2( , ) ( , ) ( ) ( , ) ( 2 ) cos( ) 2 ; 0 1, 0 1,t

t xxu x t u x t p t u x t t e x e xt x t         
 

( ,0) cos( ); 0 1,u x x x x   

(0, ) ; 0 1,t

xu t e t  
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(1, ) 0; 0 1,u t t  
1 2

2

0

1 (1 ) (1 )
( , ) { sin( ) }; 0 1.

2 8

t

t t t
u x t dx e t






 

     

The true solution is ( , ) ( cos( ))tu x t e x x   while ( ) 1 2p t t  .  We can select 

( ,0) cos( );w x x x  by using the given initial value and from equations (15).  

According to (15), one can obtain the successive approximations ( , )nw x t of ( , )w x t  as 

follow: 2

1( , ) ( cos( )) ( cos( )),w x t x x t x x    
 

4
2

2 ( , ) ( cos( )) ( cos( )) ( cos( )),
2

t
w x t x x t x x x x       

4 6
2

3( , ) ( cos( )) ( cos( )) ( cos( )) ( cos( )).
2 6

t t
w x t x x t x x x x x x            

The rest of the components of iteration formula (15) are obtained by using the Maple 

Package. Now from (12), we can obtain the successive approximations ( )nr t of ( )r t as: 
( )

0
( , )

( ) .
( )

s t

n

n

w x t dx
r t

E t



 

Finally, using (7), we can obtain the successive approximations ( , )nu x t of ( , )u x t  
and 

( )np t of ( )p t  as following:              
( . ) ( )

( , ) , ( ) .
( ) ( )

n n
n n

n n

w x t r t
u x t p t

r t r t


   

The obtained numerical results are summarized in Tables 1 and 2. In addition, the 

graphs of the error functions 10| |u u  and 10| |p p are plotted in Figure 1. 

 

Table1. The comparison between exact, FDM and VIM solutions for ( )p t  

t  Exact value ( )p t  Frist method [20] Second method [20] VIM ( 5n  ) VIM ( 10n  ) 

0.1 0.8 0.7952548681 0.7987107476 0.7999999992 0.7999999997 

0.2 0.6 0.5942632825 0.5987107476 0.6000000014 0.6000000007 

0.3 0.4 0.3937116629 0.3985704513 0.4000000269 0.3999999995 

0.4 0.2 0.1934449648 0.1984305834 0.2000000269 0.2000000002 

0.5 0.0 -0.0065131634 -0.0017537688 0.0000063377 0.0000000000 

0.6 -0.2 -0.2061411572 -0.2019831631 -0.199957814 -0.199999997 

0.7 -0.4 -0.4054351343 -0.4022583261 -0.399798103 -0.399999992 

0.8 -0.6 -0.6044082700 -0.6025801288 -0.599245056 -0.599999983 
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Table2. The comparison between exact, FDM  and VIM solutions for ( ,0.5)u x  

x  Exact value Frist method [20] Second method [20] VIM ( 5n  ) VIM ( 10n  ) 

0.1 1.7328992351 1.7329861820 1.7284586563 1.7328992372 1.7328992351 

0.2 1.6635877811 1.6636634535 1.6594361329 1.6635877833 1.6635877811 

0.3 1.4637104292 1.4637691547 1.4600169103 1.4637104296 1.4637104292 

0.4 1.1689713999 1.1690097460 1.1658643864 1.1689713999 1.1689713999 

0.5 0.8243606353 0.8243778730 0.8219140414 0.8243606359 0.8243606353 

0.6 0.4797498707 0.4797482318 0.4779764096 0.4797498713 0.4797498707 

0.7 0.1850108414 0.1849955463 0.1838627812 0.1850108410 0.1850108414 

0.8 -0.0148665104 -0.0148874533 -0.0154891066 -0.014866511 -0.0148665104 

 

 

 

a) Graph of 10| ( ) ( ) |p t p t                               b) Graph of 10| ( , ) ( , ) |u x t u x t  

Figure 1. Graph of absolute error by using VIM for Example 1 

Example 2: Consider the inverse problem (1)-(5) described by: 

( , ) ( , ) ( ) ( , ) (sin(x) cos(x)); 0 1, 0 1,t xxu x t u x t p t u x t x t       
 

( ,0) (sin(x) cos(x)); 0 1,u x x   

(0, ) ; 0 1,t

xu t e t  

(1, ) (cos(1) sin(1)); 0 1,t

xu t e t   

0
( , ) ( 1 cos( ) sin( )); 0 1.

t
tu x t dx e t t t        

The true solution is ( , ) (sin(x) cos(x))tu x t e   while ( ) tp t e . The obtained 

numerical results are summarized in Tables 3 and 4. In addition, the graphs of the error 

functions 12| |u u  and 12| |p p are plotted in Figure 2. 
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Table3. Absolute errors of np for Example 2
 

t  
6p p  8p p  10p p  10p p  12p p  

0.1 2.811E-4 1.456E-5 7.498E-7 1.382E-8 4.019E-10 

0.2 2.739E-4 1.980E-5 8.349E-7 2.987E-8 7.479E-10 

0.3 7.311E-4 1.452E-4 7.010E-6 1.009E-7 1.982E-9 

0.4 4.023E-3 2.164E-4 2.992E-6 5.620E-8 9.312E-10 

0.5 5.429E-3 3.982E-4 5.982E-6 2.845E-7 6.870E-9 

0.6 3.498E-3 1.111E-4 5.111E-6 2.001E-7 4.165E-9 

0.7 1.333E-3 1.109E-4 2.009E-7 6.194E-8 1.409E-9 

0.8 1.098E-3 1.001E-4 1.101E-6 2.500E-8 1.010E-9 

Table4. Absolute errors of nu at 0.5t   for Example 2 

x  
6u u  8u u  10u u  10u u  12u u  

0.1 5.874E-5 7.410E-6 8.621E-8 6.993E-10 3.412E-12 

0.2 4.098E-5 4.496E-6 6.982E-8 6.730E-10 1.960E-12 

0.3 3.121E-5 2.196E-6 9.671E-9 1.100E-10 5.783E-13 

0.4 3.309E-5 2.433E-6 1.010E-8 2.412E-10 6.628E-13 

0.5 5.025E-5 3.982E-6 6.422E-8 5.681E-10 1.201E-12 

0.6 3.649E-5 2.670E-6 1.145E-8 2.983E-10 8.881E-13 

0.7 1.122E-5 8.333E-7 6.610E-9 7.091E-11 2.512E-13 

0.8 8.751E-6 1.001E-7 3.370E-9 5.479E-11 1.200E-13 

 

 

               a) Graph of 12| ( ) ( ) |p t p t                               b) Graph of 12| ( , ) ( , ) |u x t u x t  

Figure2. Graph of absolute error by using VIM for Example 2 
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