A Nonholonomic Mechanical Structure for the TwoDimensional Monolayer Systems

Esmaeil Azizpour, Ghazaleh Moazzami;
University of Guilan

Received: 26 Dec 2014
Revised: 17 Sep 2017

Abstract

In this paper we study the dynamics of the 2D-motion of a particle of monolayer. A geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer. We consider a constraint submanifold of the 1 -jet space $J^{1}\left(T, R^{2}\right)$, corresponding to the given constraint condition in a monolayer space and construct the corresponding constrained mechanical system on the constraint submanifold. Then the equation of motion defined on the constraint submanifold is presented.

Keywords. Nonholonomic constraints, 2D-monolayer Lagrangian.
Mathematical Classification subject: 53C80,70G45.

Introduction

Physical systems are often subjected to various types of constraints. Generally, these constraints are position, or geometric (holonomic), constraints, or velocity (nonholonomic) constraints. If a system has constraint equations that involve velocities or derivatives of system coordinates, the constraint equations are said to be nonholonomic and the mechanical system is said to be a nonholonomic system. Although almost all the work on nonholonomic systems is concerned with the case of constraints linear in components of velocities, but a geometric theory covering general nonholonomic systems has been developed by Krupkova [2], [3].

An example of such a system might be monolayer systems. In this paper we present geometric concept of the theory of nonholonomic mechanical systems developed by

[^0]Krupkova [3] and consider the application of this theory to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer [4]. To this aim, we consider a constraint submanifold of the 1 -jet space $J^{1}\left(T, R^{2}\right)$ corresponding to the given constraint conditions and construct the corresponding constrained mechanical system on the constraint submanifold. Then the equations of motion defined on the constraint submanifold are presented.

Section 3 of this paper contains a brief outline of basic geometrical concepts of nonholonomic mechanical systems that we will need. For proofs and more details see [2], [3].

Nonholonomic mechanical systems in a monolayer space

In this section we begin with a brief introduction to a monolayer space [1], [5] and then describe the nonholonomic mechanical system related to it. To obtain the 2Dmotionn equation of a particle of monolayer, we define a first order mechanical system $[\alpha]$ in this space and calculate the nonholonomic constrained system $\left[\alpha_{Q}\right]$ related to the mechanical system $[\alpha]$.

We start with the usual physical time defined by the Euclidian manifold $(T=[0, \infty))$ and we also consider the plane manifold R^{2} having the polar coordinates (r, φ), where $r>0$ and $\varphi \in[0,2 \pi)$, and construct the 1 -jet vector bundle $J^{1}\left(T, R^{2}\right) \rightarrow$ $R \times R^{2}$, locally endowed with the coordinates $\left(t, q^{1}, q^{2}, \dot{q}^{1}, q^{2}\right):=(t, r, \varphi, \dot{r}, \varphi)$.

Using the special function:

$$
f(z)=-\int_{-z}^{\infty} \frac{e^{-t}}{t} d t
$$

we study the 2D-motion of a particle of monolayer in plane moving in such a way, that the square of its speed decreases proportionally to the reciprocal value of time passed from the beginning of the motion.

We denote by (t) the coordinate on $X=T$, by (t, r, φ) fibered coordinates on $Y=T \times R^{2}$, and by $(t, r, \varphi, r ; \varphi)$ the associated coordinates on $J^{1}\left(T, R^{2}\right)$.

This particle of monolayer governed by the jet Lagrangian function $L: J^{1}\left(T, R^{2}\right) \rightarrow R$ defined by

$$
\begin{equation*}
L(t, r, \dot{r}, \dot{\varphi})=\frac{m}{2} \dot{r}^{2}+\frac{m r^{2}}{2} \dot{\varphi}^{2} \underbrace{-p r^{5}|V| e^{\frac{2|V| t}{r}} \cdot \dot{r}^{-1}+U(t, r)}_{U_{s(t, r)}} \tag{1}
\end{equation*}
$$

where we have the following physical meanings: m is the mass of the particle; V is the $L B$-monolayer compressing speed; p is a constant monolayer parameter given by the physical formula:

$$
p=\frac{\pi^{2} q^{2}}{\varepsilon \varepsilon_{0}} \frac{\rho_{0}^{2}}{R_{0}^{2}}
$$

$U_{s}(t, r)$ is an electro capillarity potential energy including the monomolecular layer function:

$$
\begin{aligned}
U(t, r)=p\{ & \left\{-\frac{4}{3} r^{5}+\frac{16}{15}(|V| t) r^{4}+\frac{1}{30}(|V| t)^{2} r^{3}+\frac{1}{45}(|V| t)^{3} r^{2}+\frac{1}{45}(|V| t)^{4} r\right. \\
& \left.\left.+\frac{2}{45}(|V| t)^{5}\right] e^{\frac{2|V| t}{r}}-\frac{4}{45}+\frac{(|V| t)^{6}}{r} f\left(\frac{2|V| t}{r}\right) .\right\}
\end{aligned}
$$

According to the Lagrange theory on fibered manifolds [3], to every Lagrangian there exists a unique Lepagean equivalent, denoted by θ_{λ}, where λ is a Lagrangian on $J^{1}\left(T, R^{2}\right)$. The Euler-Lagrange form defined by the Lepagean equivalent depends only on the Lagrangian λ. Therefore it is referred to as the Euler-Lagrange form of the Lagrangian λ, and is denoted by E_{λ}. Now, we shall find chart expressions for the Lepagean and the Euler-Lagrange forms.

In fibered coordinates $(t, r, \varphi, r ; \varphi)$ on $J^{1}\left(T, R^{2}\right)$, the module of contact 1-forms (denoted by $\Omega^{1} J^{1}\left(T, R^{2}\right)$) is locally generated by the forms $\omega^{1}=d r-r \cdot d t$ and $\omega^{2}=d \varphi-\varphi d t$. Put $\lambda=L d t$ and denote

$$
\begin{equation*}
\theta_{\lambda}=L d t+\frac{\partial L}{\partial \dot{r}} \omega^{1}+\frac{\partial L}{\partial \dot{\varphi}} \omega^{2} \tag{2}
\end{equation*}
$$

accordingly

$$
\begin{align*}
\theta_{\lambda} & =\left(\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)-p r^{5}|V| e^{\frac{2|V| t}{r}} \dot{r}^{-1}+U(t, r)\right) d t \\
& +\left(m \dot{r}+p r^{5}|V| e^{\frac{2|V| t}{r}} \dot{r}^{-2}\right) \omega^{1}+\left(m r^{2} \dot{\varphi}\right) \omega^{2} . \tag{3}
\end{align*}
$$

We define a first order mechanical system $[\alpha]$ on the fibered manifold $J^{1}\left(T, R^{2}\right) \rightarrow R \times$ R^{2} represented by the 2-form with respect to (15)

$$
\begin{gather*}
\alpha=d \theta_{\lambda}+F=\left(m r \dot{\varphi}^{2}-\frac{5 p r^{4}|V| e^{\frac{2|V| t}{r}}}{\dot{r}}+\frac{2 p r^{3}|V|^{2} t e^{\frac{2|V| t}{r}}}{\dot{r}}+\frac{\partial U}{\partial r}\right) d r \wedge d t \\
+\left(\frac{2 p r^{4}|V|^{2} e^{\frac{2|V| t}{r}}}{\dot{r}^{2}}\right) d t \wedge \omega^{1}+\left(\frac{5 p r^{4}|V| e^{\frac{2|V| t}{r}}}{\dot{r}^{2}}-\frac{2 p r^{3}|V|^{2} t e^{\frac{2|V| t}{r}}}{\dot{r}^{2}}\right) d r \wedge \omega^{1} \\
+\left(m-\frac{2 p r^{5}|V| e^{\frac{2|V| t}{r}}}{\dot{r}^{3}}\right) d \dot{r} \wedge \omega^{1}+(2 m r \dot{\varphi}) d r \wedge \omega^{2}+\left(m r^{2}\right) d \dot{\varphi} \wedge \omega^{2}+F . \tag{4}
\end{gather*}
$$

This mechanical system is related to the dynamical form with respect to (11)

$$
\begin{equation*}
E=E_{1} d r \wedge d t+E_{2} d \varphi \wedge d t \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
E_{1}=\left(m r \dot{\varphi}-\frac{10 p r^{4}|V| e^{\frac{2|V| t}{r}}}{\dot{r}}+\frac{4 p t r^{3}|V|^{2} e^{\frac{2|V| t}{r}}}{\dot{r}}-\frac{2 p r^{4}|V|^{2} e^{\frac{2|V| t}{r}}}{\dot{r}^{2}}+\frac{\partial U}{\partial r}\right) \\
-\left(m+\frac{2 p r^{5}|V| e^{\frac{2|V| t}{r}}}{\dot{r}^{2}}\right) r ;
\end{gathered}
$$

and

$$
E_{2}=-\left(2 m r r+m r^{2} \varphi\right) .
$$

We consider the nonholonomic constraint Q given by the equation

$$
\begin{equation*}
f\left(t, r, \varphi, r ; \varphi^{\prime}\right) \equiv\left[(r)^{2}+(\varphi)^{2}\right]-\frac{1}{t}=0 \tag{6}
\end{equation*}
$$

which means that the particle's speed decreases proportionally to $\frac{1}{\sqrt{t}}$. In a neighborhood of the submanifold Q

$$
\begin{equation*}
\operatorname{rank}\left(\frac{\partial f}{\partial \dot{r}^{\prime}}, \frac{\partial f}{\partial \varphi^{\prime}}\right)=\operatorname{rank}(2 \dot{r}, 2 \dot{\varphi})=1 . \tag{7}
\end{equation*}
$$

Let $U \subset J^{1}\left(T, R^{2}\right)$ be the set of all points, where $\dot{\varphi}>0$, and consider on U the adapted coordinates $\left(t, r, \varphi, r ; \overline{\mathrm{f}}\right.$, where $\overline{\mathrm{f}}=\dot{\varphi}-g, g=\sqrt{\frac{1}{t}-(\dot{r})^{2}}$ is the equation of the constraint (6) in normal form.

The constrained system $\left[\alpha_{Q}\right]$ related to the mechanical system $[\alpha]$ and the constraint Q is the equivalence class of the 2-form (with respect to (18))

$$
\begin{equation*}
\alpha_{Q}=A_{1}^{\prime} \omega^{1} \wedge d t+B_{1,1}^{\prime} \omega^{1} \wedge d \dot{r}+\overline{\mathrm{F}}+\phi_{(2)} \tag{8}
\end{equation*}
$$

on Q, where $\overline{\mathrm{F}}$ is any 2-contact 2-form and $\phi_{(2)}$ is any constraint 2-form defined on Q.
Calculating $\overline{\mathrm{L}}=L \circ \iota$ and calculating $A_{1}^{\prime}, B_{1,1}^{\prime}$ by relationships (19), (20)

$$
\overline{\mathrm{L}}(t, r, \varphi, \dot{r}, \dot{\varphi})=L\left(t, r, \varphi, \dot{r}, \sqrt{\frac{1}{t}-(\dot{r})^{2}}\right) .
$$

Then

$$
\overline{\mathrm{L}}=\frac{m}{2} \dot{r}^{2}+\frac{m r^{2}}{2}\left(\frac{1}{t}-\dot{r}^{2}\right) \underbrace{-p r^{5}|V| e^{\frac{2|V| t}{r}} \cdot \dot{r}^{-1}+U(t, r)}_{U_{s(t, r)}},
$$

and

$$
A_{1}^{\prime}=m r g^{2}+2 m r \dot{r}^{2}-\frac{m \dot{r}^{2}}{2 t^{2}} g^{2}-\frac{10 p r^{4} t|V|^{2} e^{\frac{2|V| t}{r}}}{\dot{r}}+\frac{4 p r^{3} t|V|^{2} e^{\frac{2|V| t}{r}}}{\dot{r}}-\frac{2 p r^{4}|V|^{2} e^{\frac{2|V| t}{r}}}{\dot{r}^{2}}+\frac{\partial U}{\partial r^{\prime}},
$$

$$
B_{1,1}^{\prime}=m\left(r^{2}-1\right)-\frac{m r^{2}}{t g^{2}}+\frac{2 p r^{5} t|V| e^{\frac{2|V| t}{r}}}{\dot{r}^{3}}
$$

Reduced equation of motion of the constrained system is as follows

$$
\begin{equation*}
\left[A_{1}^{\prime}+B_{1,1}^{\prime} r\right] \circ J^{2} \bar{\gamma}=0, \tag{9}
\end{equation*}
$$

where $\bar{\gamma}=(t, r(t), \varphi(t))$ is a section satisfying the constraint equation $f \circ J^{1} \gamma=0$.

Lagrangian systems on fibered manifolds

Throughout this section we consider a fibered manifold $\pi: Y \rightarrow X$ with a one dimensional base space X and $(m+1)$-dimensional total space Y. We use jet prolongations $\pi_{1}: J^{1}(X, Y) \rightarrow X$ and $\pi_{2}: J^{2}(X, Y) \rightarrow X$ and jet projections $\pi_{1,0}: J^{1}(X, Y) \rightarrow Y$ and $\pi_{2,1}: J^{2}(X, Y) \rightarrow J^{1}(X, Y)$. Configuration space at a fixed time is represented by a fiber of the fibered manifold π and a corresponding phase space is then a fiber of the fibered manifold π_{1}. Local fibered coordinates on Y are denoted by $\left(t, q^{\sigma}\right)$, where $1 \leq \sigma \leq m$. The associated coordinates on $J^{1}(X, Y)$ and $J^{2}(X, Y)$ are denoted by $\left(t, q^{\sigma}, q^{\sigma}\right)$ and $\left(t, q^{\sigma}, \dot{q}^{\sigma}, q^{\sigma}\right)$, respectively. In calculations we use either a canonical basis of one forms on $J^{1}(X, Y),\left(d t, d q^{\sigma}, d \dot{q}^{\sigma}\right)$, or a basis adapted to the contact structure

$$
\left(d t, \omega^{\sigma}, d \dot{q}^{\sigma}\right)
$$

where

$$
\omega^{\sigma}=d q^{\sigma}-\dot{q}^{\sigma} d t, \quad 1 \leq \sigma \leq m .
$$

Whenever possible, the summation convention is used. If $\mathrm{f}\left(t, q^{\sigma}, \dot{q}^{\sigma}\right)$ is a function defined on an open set of $J^{1}(X, Y)$ we write

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q^{\sigma}} \dot{q}^{\sigma}+\frac{\partial f}{\partial \dot{q}^{\sigma}} q^{\sigma}, \quad \frac{\bar{d} f}{\overline{\bar{t}}}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q^{\sigma}} \dot{q}^{\sigma}
$$

A differential form ρ is called contact if $J^{1} \gamma^{*} \rho=0$ for every section γ of π. A contact 2 -form ρ is called 1 -contact if for every vertical vector field $\xi, i_{\xi} \rho_{1}$ is a horizontal; ρ is 2 -contact if $i_{\xi} \rho_{1}$ is 1 -contact. The operator assigning to ρ it's 1 contact part is denoted by p_{1}.

If λ is a Lagrangian on $J^{1}(X, Y)$, we denote by θ_{λ} its Lepage equivalent or Cartan form and E_{λ} its Euler-Lagrange form, respectively. Recall that $E_{\lambda}=p_{1} d \theta_{\lambda}$. In fibered coordinates where $\lambda=L\left(t, q^{\sigma}, \dot{q}^{\sigma}\right) d t$, we have

$$
\begin{equation*}
\theta_{\lambda}=L d t+\frac{\partial L}{\partial \dot{q}^{\sigma}} \omega^{\sigma} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\lambda}=E_{\sigma}(L) \omega^{\sigma} \wedge d t \tag{11}
\end{equation*}
$$

where the components $E_{\sigma}(L)=\frac{\partial L}{\partial q^{\sigma}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{\sigma}}$, are the Euler-Lagrange expressions. Since the functions E_{σ} are affine in the second derivatives we write

$$
E_{\sigma}=A_{\sigma}+B_{\sigma v} q^{i v},
$$

where

$$
\begin{equation*}
A_{\sigma}=\frac{\partial L}{\partial q^{\sigma}}-\frac{\partial^{2} L}{\partial t \partial \dot{q}^{\sigma}}-\frac{\partial^{2} L}{\partial q^{v} \partial \dot{q}^{\sigma}} \dot{q}^{v}, \quad B_{\sigma v}=-\frac{\partial^{2} L}{\partial \dot{q}^{\sigma} \partial \dot{q}^{v}} . \tag{12}
\end{equation*}
$$

A section γ of π is called a path of the Euler-Lagrange form E_{λ} if

$$
\begin{equation*}
E_{\lambda} \circ J^{2} \gamma=0 . \tag{13}
\end{equation*}
$$

In fibered coordinates this equation represents a system of m second-order ordinary differential equations

$$
\begin{equation*}
A_{\sigma}\left(t, \gamma^{v}, \frac{d \gamma^{v}}{d t}\right)+B_{\sigma} \rho\left(t, \gamma^{v}, \frac{d \gamma^{v}}{d t}\right) \frac{d^{2} \gamma^{\rho}}{d t^{2}}=0 \tag{14}
\end{equation*}
$$

for components $\gamma^{\nu}(t)$ of a section γ, where $1 \leq \nu \leq m$. These equations are called Euler-Lagrange equations or motion equations and their solutions are called paths. Euler-Lagrange equations (14) can be written in the form

$$
J^{1} \gamma^{*} i_{\xi} \alpha=0
$$

where $\alpha=d \theta_{\lambda}+F$ is any 2-form defined on an open subset $W \subset J^{1}(X, Y)$, such that $p_{1} \alpha=E_{\lambda}$, and F is a 2-contact 2-form. In fibered coordinates we have $F=F_{\sigma v} \omega^{\sigma} \wedge \omega^{v}$, where $F_{\sigma v}\left(t, q^{\rho}, q^{\rho}\right)$ are arbitrary functions. Recall from [3] that the family of all such (local) 2-forms:

$$
\begin{equation*}
\alpha=d \theta_{\lambda}+F=A_{\sigma} \omega^{\sigma} \wedge d t+B_{\sigma v} \omega^{\sigma} \wedge d q^{\nu}+F \tag{15}
\end{equation*}
$$

is called a first order Lagrangian system, and is denoted by $[\alpha]$.
A non-holonomic constrained mechanical system is defined on the ($2 \mathrm{~m}+1-\mathrm{k}$)dimensional constraint submanifold $Q \subset J^{1}(X, Y)$ fibered over Y and given by k equations

$$
f^{i}\left(t, q^{1}, \ldots, q^{m}, q^{1}, \ldots, \dot{q}^{m}\right)=0, \quad 1 \leq i \leq k
$$

where

$$
\begin{equation*}
\operatorname{rank}\left(\frac{\partial f^{i}}{\partial \dot{q}^{\sigma}}\right)=k \tag{16}
\end{equation*}
$$

or following [6], equivalently in an explicit form

$$
\begin{equation*}
\dot{q}^{m-k+i}=g^{i}\left(t, q^{\sigma}, \dot{q}^{1}, \dot{q}^{2}, \ldots, \dot{q}^{m-k}\right), \quad 1 \leq i \leq k \tag{17}
\end{equation*}
$$

By a nonholonomic constrained system arising from the Lagrangian system $[\alpha]$ and constraint forms on the constraint submanifold Q, we mean the equivalence class $\left[\alpha_{Q}\right]$ on Q, where

$$
\alpha_{Q}=\iota^{*} d \theta_{\lambda}+\bar{F}+\phi_{(2)},
$$

where \bar{F} is any 2-contact $\pi_{1,0}$ horizontal 2-form and ϕ_{2} is any constraint 2-form defined on Q, and ι is the canonical embedding of Q into $J^{1}(X, Y)$. The local form of $\left[\alpha_{Q}\right.$] is

$$
\begin{equation*}
\alpha_{Q}=\sum_{l=1}^{m-k} A_{l}^{\prime} \omega^{l} \wedge d t+\sum_{l, s=1}^{m-k} B_{l s}^{\prime} \omega^{l} \wedge d \dot{q}^{s}+\bar{F}+\phi_{(2)} \tag{18}
\end{equation*}
$$

where the components A_{l}^{\prime} and $B_{l, s}^{\prime}$ are given by

$$
\begin{gathered}
A_{l}^{\prime}=\frac{\partial \bar{L}}{\partial q^{l}}+\frac{\partial \bar{L}}{\partial q^{m-k+i}} \frac{\partial g^{i}}{\partial \dot{q}^{l}}-\frac{\bar{d} c}{d t} \frac{\partial \bar{L}}{\partial \dot{q}^{l}}+\left(\frac{\partial L}{\partial \dot{q}^{m-k+j}}\right)_{l}\left[\frac{\bar{d} c}{d t}\left(\frac{\partial g^{j}}{\partial \dot{q}^{l}}\right)-\frac{\partial g^{j}}{\partial q^{l}}-\right. \\
\left.\frac{\partial g^{j}}{\partial q^{m-k+i}} \frac{\partial g^{i}}{\partial \dot{q}^{l}}\right], \\
B_{l, s}^{\prime}=-\frac{\partial^{2} \bar{L}}{\partial \dot{q}^{l} \partial \dot{q}^{s}}+\left(\frac{\partial L}{\partial \dot{q}^{m-k+i}}\right)_{\iota} \frac{\partial^{2} g^{i}}{\partial \dot{q}^{l} \partial \dot{q}^{s}},
\end{gathered}
$$

$\bar{L}=L \circ \iota$, and

$$
\frac{\bar{c} c}{d t}=\frac{\partial}{\partial t}+\dot{q}^{s} \frac{\partial}{\partial q^{s}}+g^{i} \frac{\partial}{\partial q^{m-k+i}} .
$$

The equations of the motion of the constrained system $\left[\alpha_{Q}\right]$ in fibered coordinates take the form

$$
\begin{equation*}
\left(A_{l}^{\prime}+\sum_{s=1}^{\mathrm{m}-\mathrm{k}} B_{l, s}^{\prime} \ddot{q}^{s}\right) \circ J^{2} \bar{\gamma}=0 . \tag{19}
\end{equation*}
$$

for components $\gamma^{1}(t), \gamma^{2}(t), \ldots, \gamma^{m-k}(t)$ of a $Q-$ admissible section $\bar{\gamma}$ dependent on time t and parameters $q^{m-k+1}, q^{m-k+2}, \ldots, q^{m}$, which have to be determined as functions $\gamma^{m-k+1}(t), \gamma^{m-k+2}(t), \ldots, \gamma^{m}(t)$ from the equations (17) of the constraint

$$
\frac{d q^{m-k+i}}{d t}=g^{i}\left(t, q^{\sigma}, \frac{d q^{1}}{d t}, \frac{d q^{2}}{d t}, \ldots, \frac{d q^{m-k}}{d t}\right), \quad 1 \leq i \leq k
$$

References

1. Balan V., Neagu M., "Jet Single-Time Lagrange Geometry and Its Applications", John Wiley \& Sons, Inc., Hoboken, New Jersey) 2011).
2. Krupkova O., "Mechanical systems with nonholonomic constraints", J. Math. Phys. 38 (1997) 5098-5126.
3. Krupkova O., "The Geometry of Ordinary Variational Equations", Lecture Notes in Math. 1678, Springer, Berlin) 1997).
4. Motschmann H., Mohwald H., "Langmuir-Blodgett Films, Handbook of Applied Surface and Colloid Chemistry", (Ed. Krister Holmberg), Ch. 28 (2001), 629-648.
5. Neagu M., Krylova N. G., Grushevskaya H. V., "Jet theoretical Yang-Mills energy in the geometric dynamics of 2D-monolayer", Journal of Mathematical Physics, Vol. 54, 031508 (2013), 1-14; doi: 10.1063/1.4795715.
6. Arnold V. I., Kozlov V. V., Neishtadt A. I., "Mathematical aspects of classical and celestial mechanics", Encyclopedia of Math. Sciences.

[^0]: *Corresponding author: eazizpour@guilan.ac.ir

