Multicolor Size-Ramsey Number of Paths

Ramin Javadi*, Meysam Miralaei;
Department of Mathematical Sciences, Isfahan University of Technology,
Isfahan, Iran
Received: 02/20/219 Accepted: 12/04/2019
Extended Abstract
Paper pages (485-494)

Introduction

The size-Ramsey number of a graph F denoted by $\hat{r}(F, r)$ is the smallest integer m such that there is a graph G with m edges with this property that for any coloring of the edges of G with r colors, G contains a monochromatic copy of F. The investigation of the size-Ramsey numbers of graphs was initiated by Erdős, Faudree, Rousseau and Schelp in 1978. Since then, Size-Ramsey numbers have been studied with particular focus on the case of trees and bounded degree graphs.

Addressing a question posed by Erdős, Beck [2] proved that the size-Ramsey number of the path P_{n} is linear in n by means of a probabilistic construction. In fact, Beck's proof implies that $\hat{r}\left(P_{n}, 2\right) \leq 900 n$ and this upper bound was improved several times. Currently, the best known upper bound is due to Dudek and Prałat [4] which proved that $\hat{r}\left(P_{n}, 2\right) \leq 74 n$. On the other hand, the first nontrivial lower bound for $\hat{r}\left(P_{n}, 2\right)$ was provided by Beck and his result was subsequently improved by Dudek and Prałat [3] who showed that $\hat{r}\left(P_{n}, 2\right) \geq 5 n / 2-$ $O(1)$. The strongest known lower bound, $\hat{r}\left(P_{n}, 2\right) \geq(3.75-O(1)) n$, was proved recently by Bal and DeBiasio [1].

Let us now move to the multicolor version of the problem. Dudek and Prałat [3] proved that

$$
\frac{(r+3) r}{4} n-O\left(r^{2}\right)<\hat{r}\left(P_{n}, r\right)<33 r 4^{r} n
$$

It follows that $\hat{r}\left(P_{n}, r\right)$ is linear in terms of n for any fixed value of r, however the two bounds are quite far apart from being sharp in terms of their dependence on r. Subsequently, Krivelevich [6] and separately Dudek and Prałat [5] proved that if n is sufficiently large, then $\hat{r}\left(P_{n}, r\right) \leq 600 r^{2}(\ln r) n$. As a result we get
that $\hat{r}\left(P_{n}, r\right)=O\left((\ln r) r^{2} n\right)$. In this paper, we improve the latter upper bound and prove that $\hat{r}\left(P_{n}, r\right) \leq$ $\left(18+o_{r}(1)\right) r^{2}(\ln r) n$.

Material and methods

Our method for establishing the upper bound is essentially a probabilistic construction. In this scheme, first we prove a bipartite version of Posa's Lemma which seeks for a long path in a bipartite graph. In fact, we obtain a sufficient condition for the existence of a long path in a bipartite graph. Then, using the probabilistic method and Chernoff's inequality, we prove that there exists a random sparse bipartite graph G such that every dense spanning subgraph of G contains a long path.

Results and discussion

We determine an upper bound for the multicolor size-Ramsey number of paths. This upper bound shows that $\hat{r}\left(P_{n}, r\right)$ grows linearly with n and its dependency on the number of colors r is of order $r^{2}(\ln r)$. More precisely, we prove that $\hat{r}\left(P_{n}, r\right) \leq 18\left(1+o_{r}(1)\right) r^{2}(\ln r) n$. This upper bound is nearly optimal, since it is well known that $\hat{r}\left(P_{n}, r\right)=\Omega\left(r^{2} n\right)$.

Conclusion

The following conclusions were drawn from this research.

- Let $k>0$ be an integer and $G\left(V_{0} \cup V_{1}, E\right)$ be a bipartite graph with this property that for every subset $S \subseteq V_{i}, i \in\{0,1\}$, with $|S| \leq k$ we have $|\Gamma(S)| \geq 2|S|$. Then, G contains a path $P_{4 k}$.
- Let γ, f, d and ε be positive numbers with $d>\frac{1}{\gamma} \geq 1$ and $f>\frac{18(\ln d+2)}{((1-\varepsilon) \gamma d-1)^{2}}$. For sufficiently large n, there exists a bipartite graph G with $n d$ vertices in each part, such that $e(G) \leq(1+\varepsilon) f d^{2} n$ and every spanning subgraph H of G with $e(H) \geq \Upsilon e(G)$ contains a path P_{n}.
- For an integer $r \geq 2$ and sufficiently large n, we have

$$
\hat{r}\left(P_{n}, r\right) \leq 18\left(1+o_{r}(1)\right) r^{2}(\ln r) n
$$

Keywords: Random graphs; Ramsey numbers; Size-Ramsey numbers; Paths.

[^0]
[^0]: *Corresponding author: rjavadi@cc.iut.ac.ir

