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Introduction 

In industrial designing and manufacturing, it is often required to generate a smooth function 

approximating a given set of data which preserves certain shape properties of the data such as 

positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. 

 It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than 

least squares or other approximation methods. The shape preserving interpolation problem seeks 

a smooth curve/surface passing through a given set of data, in which we priorly know that there 

is a shape feature in it and one wishes the interpolant to inherit these features. One of the hidden 

features in a data set may be its boundedness. Therefore, we have a data set, which is bounded, 

and we already know that. This happens, for example, when the data comes from a sampling of 

a bounded function or they reflect the probability or efficiency of a process.  

Scientists have proposed various shape-preserving interpolation methods and every approach 

has its own advantages and drawbacks. However, anyone confesses that splines play a crucial 

role in any shape-preserving technique and every approach to shape-preserving interpolation, 

more or less, uses splines as a cornerstone. 

This study concerns an interpolation problem, which must preserve boundedness and needs a 

smooth representation of the data so the cubic Hermite splines are employed. 

Problem Formulation and the Key Idea 

The main problem is stated as follows:  
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2 ( )f x . We call this as the constrained 

interpolation problem.   This article handles this problem using cubic Splines and we confine  

1( )f x  and 
2 ( )f x  to be quadratic polynomials.  For this end, we use the literature and get use of 

positivity preserving results, to restate the problem and define two functions as follows:  
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where ( )i im S x  are unknown slopes which are auxiliary parameters to control the shape 

constraints.  The following lemma is a key result from literature that we employ it to find 

unknowns according to desired constraints. 

Lemma: The function ( )iS x  is positive on  ,i ix x 1  if   ,i im m R 1 1 where  
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We employ this lemma on 1 1( ) ( ) ( )S x S x f x  و     2 2( ) ( ) ( )S x f x S x   and come to 

some conditions on 
im under which the cubic Hermite spline lies between    

1( )f x  and 
2 ( )f x . 

(We consider the quadratic case where,  
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Results and Discussion 
Theorem 1: A sufficient condition for the cubic Hermite spline  ( )S x  to lie between    
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and 
2 ( )f x  is that the 
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These conditions result in a  1C   spline  interpolant.  One can add more restrictions to get 

smoother interpolants, for a 2C  interpolant the following equations must be satisfied: 
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These conditions restrict the feasible region but still can be handled by linear programming 

techniques.  

The problem in both 1C  and 2C  cases may have several solutions, we can put more restrictions 

to achieve visually pleasing curves. The energy minimization technique proposed by Wolberg 

and Alfy ( G. Wolberg and I. Alfy, An energy-minimization framework for monotonic cubic 

spline interpolation. Journal of Computational and Applied Mathematics,   2002, 143(2), pp. 

145--188.)  could be used to find smooth enough splines with minimum curvature.  
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