A locally Convex Topology on the Beurling Algebras

Saeid Maghsoudi^{*}

Department of Mathematics, University of Zanjan

Received: 25 Oct. 2016 Revised: 27 June 2018

Extended Abstract

Paper pages (221-228)

Introduction

Let *G* be a locally compact group with a fixed left Haar measure λ and ω be a weight function on *G*; that is a Borel measurable function $\omega: G \to (0, \infty)$ with $\omega(xy) \leq \omega(x)\omega(y)$ for all $x, y \in G$. We denote by $L^1(G, \omega)$ the set of all measurable functions φ such that $\varphi \omega \in L^1(G)$; the group algebra of *G* as defined in [2]. Then $L^1(G, \omega)$ with the convolution product "*" and the norm $\|.\|_{1,\omega}$ defined by $\|\varphi\|_{1,\omega} = \|\varphi\omega\|_1$ is a Banach algebra known as Beurling algebra. We denote by $n(G, \omega)$ the topology generated by the norm $\|.\|_{1,\omega}$. Also, let $L^{\infty}(G, \frac{1}{\omega})$ denote the space of all measurable functions *f* with $f/\omega \in L^{\infty}(G)$, the Lebesgue space as defined in [2].

Then $L^{\infty}(G, \frac{1}{\omega})$ with the product $._{\omega}$ defined by $f ._{\omega} g = fg/\omega$, the norm $\|.\|_{\infty,\omega}$ defined by $\|f\|_{\infty,\omega} = \|f\omega\|_{\infty}$, and the complex conjugation as involution is a commutative C^* -algebra. Moreover, $L^{\infty}(G, \frac{1}{\omega})$ is the dual of $L^1(G, \omega)$. In fact, the mapping $T: L^{\infty}\left(G, \frac{1}{\omega}\right) \rightarrow L^1(G, \omega)^*$, $< T(f), \varphi > = \int f(x)\varphi(x) d\lambda(x)$ is an isometric isomorphism. We denote by $L_0^{\infty}\left(G, \frac{1}{\omega}\right)$ the C*-subalgebra of $L^{\infty}(G, \frac{1}{\omega})$ consisting of all functions g on

G such that for each $\epsilon > 0$, there is a compact subset *K* of *G* for which $\|g\chi_{G\setminus K}\|_{\infty,\omega} < \epsilon$. For a study of $L_0^{\infty}\left(G, \frac{1}{\omega}\right)$ in the unweighted case see [3,6].

We introduce and study a locally convex topology $\beta^1(G,\omega)$ on $L^1(G,\omega)$ such that $L_0^{\infty}\left(G,\frac{1}{\omega}\right)$ can be identified with the strong dual of $L^1(G,\omega)$. Our work generalizes some interesting results of [15] for group algebras to a more general setting of weighted group algebras. We also show that $(L^1(G,\omega),\beta^1(G,\omega))$ could be a normable or bornological space only if *G* is compact. Finally, we prove that $L_0^{\infty}\left(G,\frac{1}{\omega}\right)$ is complemented in $L^{\infty}(G,\frac{1}{\omega})$ if and only if G is compact. For some similar recent studies see [4,7,8,10,12-14]. One may be interested to see the work [9] for an application of these results.

Main results

We denote by \mathcal{C} the set of increasing sequences of compact subsets of G and by \mathcal{R} the set of increasing sequences (r_n) of real numbers in $(0, \infty)$ divergent to infinity. For any $(C_n) \in \mathcal{C}$ and $(r_n) \in \mathcal{R}$, set $U((C_n), (r_n)) = \{\varphi \in L^1(G, \omega) : \|\varphi\|_{1,\omega} < r_n, \forall n \ge 1\}$ and note that $U((C_n), (r_n))$ is a convex balanced absorbing set in the space $L^1(G, \omega)$. It is easy to see that the family \mathcal{U} of all sets $U((C_n), (r_n))$ is a base of neighbourhoods of zero for a locally convex topology on $L^1(G, \omega)$; see for example [16]. We denote this topology by $\beta^1(G, \omega)$.

Here we use some ideas from [15], where this topology has been introduced and studied for group algebras.

Proposition 2.1 Let *G* be a locally compact group, and ω be a weight function on *G*. The norm topology $n(G,\omega)$ on $L^1(G,\omega)$ coincides with the topology $\beta^1(G,\omega)$ if and only if *G* is compact.

Proposition 2.2 Let *G* be a locally compact group, and ω be a weight function on *G*. Then the dual of $(L^1(G, \omega), \beta^1(G, \omega))$ endowed with the strong topology can be identified with $L_0^{\infty}\left(G, \frac{1}{\omega}\right)$ endowed with $\|.\|_{\infty,\omega}$ -topology.

Proposition 2.3 Let *G* be a locally compact group, and ω be a weight function on *G*. Then the following assertions are equivalent:

a) $(L^1(G, \omega), \beta^1(G, \omega))$ is barrelled.

b) $(L^1(G, \omega), \beta^1(G, \omega))$ is bornological.

c) $(L^1(G, \omega), \beta^1(G, \omega))$ is metrizable.

d) *G* is compact.

Proposition 2.4 Let *G* be a locally compact group, and ω be a weight function on *G*. Then $L_0^{\infty}\left(G, \frac{1}{\omega}\right)$ is not complemented in $L^{\infty}(G, \frac{1}{\omega})$.

Keywords: Locally compact group, Locally convex topology, Weighted Lebesgue space, Dual.

*Corresponding author: s_maghsodi@znu.ac.ir