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 In this paper, we apply the extended triangular operational matrices of fractional order to 

solve the fractional Voltrra s model for population growth of a species in a closed system. The 

fractional derivative is considered in the Caputo sense. This technique is based on generalized 

operational matrix of triangular functions. The introduced method reduces the proposed problem 

to solving a system of algebraic equations. Illustrative examples are included to demonstrate the 

validity and the applicability of the proposed method. 

Introduction 

In recent years, fractional calculus and differential equations have found enormous 

applications in mathematics, physics, chemistry, and engineering [1-3]. Some authors have 

presented the numerical methods for some differential and integral equation problems involved 

fractional derivatives [4-6]. In this paper, we consider the fractional population growth model 

(FPGM) of a species in a closed system [7,8]. The model is characterized by the nonlinear 

fractional Volterra integro-differential equation:  

                         (1) 

 subject to the initial condition  

                                                   (2)  

 where y(t)  is the population of identical individuals at time  is a constant describing 

the order of the time fractional derivative,  is the birth rate coefficient,  is the 

crowding coefficient, and  is the toxicity coefficient [13,14].  

Solving FPGM 

 In this sectionan effective direct method for solving FPGM is presented. Using the 

definitions of the fractional derivatives and integrals, it is suitable to rewrite Eq.(1) in the 

following form  

                 (3) 

 Approximations of  and  with respect to TFs may be written as  

                                          (4) 

                                       (5) 

                                 (6) 
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where 2m-vectors ,  and  are TF coefficients. Also elements of  are 2nh power of the 

entries of vector Y. From Eqs.(5), last term in Eq.(3) can be approximated as  

 

                                   (7) 

 also  

                           (8) 

 where  is 2m-vector with elements equal to the diagonal entries of matrix  . By 

substituting Eqs.(4,5,6), and (8) in Eq.(3), we get  

           (9) 

                      (10) 

  Eq.(10) is a nonlinear system of algebraic equations. Components of unknown vector  

can be obtained by solving this system using an iterative method. Hence, the approximate 

solution  can be computed without using any projection method.  

Conclusion 

In this paper, we present a computational method based on TFs for solving nonlinear 

fractional Volterra’s population model by means of triangular operational matrix. Generalized 

operational matrix of TF is derived and used to reduce FPGM to a system of algebraic 

equations. The advantage of this method is low cost of setting up the equations without applying 

any projection method. Also results show good accuracy in comparison with other methods.  
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