A Note on Hilbert Modules

Abbas Sahleh, Leila Najarpisheh

Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran Rahbord Shomal Institute, Rasht, Iran

Received: 2019/02/11 Accepted: 2019/11/23

Extended Abstract

Paper pages (311-316)

Introduction and preliminaries

Hilbert C*-modules were first introduced in the work of I. Kaplansky.Hilbert C*-modules are the natural generalization that of Hilbert spaces arising by replacing of the field of scalars C by a C*-algebra. Let us recall some basic facts about the Hilbert C*-modules.

Let A be a C*-algebra. An right inner product A-module is a linear space X which is a right A-module (with compatible scalar multiplication: $\lambda(x.a) = (\lambda x).a = x.(\lambda a)$ for $x \in X$, $a \in A$, $\lambda \in C$), together with a map $(x, y) \rightarrow \langle x, y \rangle_X : X \times X \rightarrow A$ such that for all x, y, $z \in X$, $a \in A$, $\alpha, \beta \in C$

(i) $\langle x, \alpha y + \beta z \rangle_X = \alpha \langle x, y \rangle_X + \beta \langle x, z \rangle_X$;

(ii) $\langle x, y. a \rangle_X = \langle x, y \rangle_X$ a;

(iii) $\langle y, x \rangle_X = \langle x, y \rangle_X^*$;

(iv) $\langle x, x \rangle_X \ge 0$; if $\langle x, x \rangle_X = 0$ then x = 0.

A right pre-Hilbert A-module X is called a right Hilbert A-module if it is complete with respect to the norm $||x|| = ||\langle x, x \rangle_X||^{\frac{1}{2}}$. X is said to be full if the linear span of the set $\{\langle x, y \rangle_X : x, y \in X\}$ is dense in A. One interesting example of full right Hilbert C*-modules is any C*-algebra A as a right Hilbert A-module via $\langle a, b \rangle_A = a*b$ (a, $b \in A$). Likewise, a left Hilbert A-module with an A-valued inner product $_X \langle ., . \rangle$ can be defined.

Let X be a right Hilbert A-module, we define L(X) to be the set of allmaps T : X \rightarrow X for which there is a map T* : X \rightarrow X such that $\langle Tx, y \rangle_X = \langle x, T * y \rangle_X$ (x, y \in X). The map T* is called the adjoint of T and it is easy to see that T must be bounded and A-linear. We call L(X) the set of adjointable operators on X and it is a C*-algebra. For x, y \in X, define the operator $\theta_{x,y}$ on X by $\theta_{x,y}(z) = x.\langle y, z \rangle_X$ ($z \in X$). Denote by K(X) the closed linear span of { $\theta_{x,y}$: x, y \in X}, then K(X) is a closed two sided ideal in L(X). Elements of K(X) are often referred to as compact operators.

Let X be an A-bimodule. X is said to be a Hilbert A-bimodule, when X is a left and right Hilbert A-module and satisfies the relation $_X\langle x, y\rangle \cdot z = x \cdot \langle y, z \rangle_X$. We notice that $\| _X\langle x, x \rangle$ $\|=\|\langle x, x \rangle_X\|$ for all $x \in X$. In this paper a derivation of an algebra A is a linear mapping D from A into itself such that D(ab) = D(a)b+aD(b) for all $a, b \in A$. For a fixed $b \in A$, the mapping $a \rightarrow$ ba- ab is clearly a derivation, which is called an inner derivation implemented by b.

Results and discussion

Let A be a C*-algebra. Let X be a left Hilbert A-module, and let e be an arbitrary element in X with

 $\|e\| = 1$. Then the map $\pi_e: X \times X \to X$ defined by $\pi_e(x, y) = x < x, e > y$ is a product on X and X together with this product is a Banach algebra. We denote this Banach algebra by (X, π_e) .

Mathematical Researches (Sci. Kharazmi University) Vol. 7, No. 2 Summer 2021

In the second section of this paper, we first prove that for a Full right Hilbert A-module X, a dderivation δ on X is a derivation on (X, π_e) if and only if $d(\langle e, x \rangle) = \langle e, \delta(x) \rangle$ for all $x \in X$ and then give the certain conditions for innerness of a d-derivation δ on (X, π_e) . In the third section, we suppose that A is unital and e is an element of X such that $_X \langle e, e \rangle =$ $\langle e, e \rangle_X = 1_A$ and define the map $*: X \to X$ by $x^* := e \cdot \langle x, e \rangle_X$ and we show that X is a C*-algebra with the product π_e and subalgebra of K(X).

Keywords: Hilbert C*-modules, Banach algebras, C*-algebras, d-derivation.

*Corresponding author: sahlehj@guilan.ac.ir