Approximation in Banach Spaces of Vector-Valued Lipschitz Functions

Kobra Esmaeili

Faculty of Engineering, Ardakan University, Ardakan, Iran Received: 2019/02/11 Accepted: 2019/11/23

Extended Abstract

Paper pages (191-200)

Introduction

Let (X, d) be a nonempty metric space, $(S, \|\cdot\|_S)$ be a complex Banach space and $0 \le \alpha \le 1$. By Lip_{α}(X, S) we denote the space of all S-valued bounded functions f on X for which

is finite and by $lip_{\alpha}(X, S)$ we denote the subspace of $Lip_{\alpha}(X, S)$ consisting of functions f for which

For $f \in Lip_{\alpha}(X, S)$ define $||f||_{\alpha,S} = ||f||_X + p_{\alpha,S}(f)$ where $||\cdot||_X$ is the supremum norm on X. Then $(Lip_{\alpha}(X, S), ||\cdot||_{\alpha,S})$ is a Banach space and $lip_{\alpha}(X, S)$ is a closed subspace of $Lip_{\alpha}(X, S)$. When $S = \mathbb{C}$, we write simply $Lip_{\alpha}(X)$ and $lip_{\alpha}(X)$ for $Lip_{\alpha}(X, \mathbb{C})$ and $lip_{\alpha}(X, \mathbb{C})$, respectively. In this paper, by considering the space of measures on X whose values lie in the dual space S^* of S, we adopt a similar method as in [1] for vector-valued Lipschitz functions to give a criterion for the density of a subspace of $lip_{\alpha}(X, S)$. Then we conclude that $Lip_1([a,b], S)$ is dense in $lip_{\alpha}([a,b], S)$. Finally using Bochner spaces, S^* -valued measure theory and duality, we show that $C^1([a,b], S)$ is dense in $lip_{\alpha}([a,b], S)$.

Main Results

Let X be a locally compact Hausdorff space, and S a complex Banach space. The space of all bounded continuous S-valued functions on X will be denoted by C(X,S) and the subspace of C(X,S) consisting of all functions vanishing at infinity by $C_0(X,S)$. These spaces, equipped by supremum norm $||f||_X = \sup_{x \in X} ||f(x)||_S$ for $f \in C(X,S)$, are Banach spaces. In the case $S = \mathbb{C}$, we will denote these spaces by C(X) and $C_0(X)$.

The space of all complex regular Borel measures on X will be denoted by M(X), and the dual space of S by S^{*}. It will be denoted by $M(X, S^*)$, the space of all S^{*}-valued Borel measures μ on X satisfying the following conditions:

i. $(s,\mu(\cdot)) \in M(X)$ for every $s \in S$;

ii. There exists a constant C such that $\sup |\sum \langle s_i, \mu(A_i) \rangle| \le C$ where the supremum is taken over all partitions of X into a finite number of disjoin Borel sets $\{A_i\}$ and all finite collections of elements $\{s_i\}$ in S such that $||s_i||_S \le 1$.

For $\in \mu M(X, S^*)$ and $f \in C(X,S)$, the integral $\int_X f d\mu$ is of the Riemann-Stieltjes type obtained by taking the limit under successive refinements of sums of the form $\sum \langle f(x_i), \mu(A_i) \rangle$, where $\{A_i\}$ is a finite partition of X into disjoint Borel sets and $\{x_i\}$ is a sequence in X such that $x_i \in A_i$.

Let (X, d) be a compact metric space, and set $V=\{(x,y)\in X\times X : x\neq y\}$ and $\widetilde{X}=X\cup V$, so that \widetilde{X} is a locally compact space. Fixing $0 \le \alpha \le 1$, for $f \in C(X,S)$ define \widetilde{f} on \widetilde{X} by

Then $\tilde{f} \in C(\tilde{X}, S)$ and the mapping $f \mapsto \tilde{f}$ is a linear isometry from $(Lip_{\alpha}(X, S), \|\cdot\|_{\alpha,S})$ into $(C(\tilde{X}, S), \Box, \Box_{\tilde{X}})$, where $\Box, \Box_{\tilde{X}} = \|\cdot\|_{X} + \|\cdot\|_{V}$. It can be easily seen that the image of $lip_{\alpha}(X, S)$ is contained in $C_{0}(\tilde{X}, S)$.

Lemma 1. For every $\mu \in M(\widetilde{X}, S^*)$ and $\varepsilon > 0$, there exists $\nu \in M(X, S^*)$ such that

$$\left| \int_{\widetilde{X}} \widetilde{f} \, d\mu - \int_{X} f \, d\nu \right| < \epsilon \|f\|_{\alpha,S}, \qquad f \in \operatorname{Lip}_{\alpha}(X,S).$$

Lemma 2. Let $\nu \in M(X, S^*)$ and $\varepsilon > 0$. Then there exists a measure $\lambda \in M(X, S^*)$ with finite support such that

$$\left| \int_{X} f \, d\nu - \int_{X} f \, d\lambda \right| < \varepsilon \, \|f\|_{\alpha,S}, \qquad f \in \operatorname{lip}_{\alpha}(X, S).$$

Applying two above lemmas, we obtain the following approximation theorem.

Theorem 3. Let L be a linear subspace of $\lim_{\alpha} (X, S)$. Suppose that there is a constant C such that for every finite subset E of X and each $f \in \lim_{\alpha} (X, S)$, there exists $g \in L$ such that f=g on E and $||g||_{\alpha,S} \leq C||f||_{\alpha,S}$. Then L is dense in $\lim_{\alpha} (X, S)$.

The following theorem is similar to [1, Lemma 3.3]. The proof given in [1] for the scalar case does not apply here though.

Theorem 4. For every $f \in lip_{\alpha}([a,b], S)$ and for every finite subset E of [a,b], there exists a function $g \in Lip_1([a,b], S)$ such that f=g on E and $||g||_{\alpha,S} \leq 3||f||_{\alpha,S}$.

As an immediate consequence of Theorems 3 and ξ we obtain:

Corollary 5. $\operatorname{Lip}_1([a,b], S)$ is dense in $\operatorname{lip}_{\alpha}([a,b], S)$.

Corollary 6. Let $0 \le \alpha \le \beta \le 1$. Then $\operatorname{Lip}_{\beta}([a,b], S)$ and $\operatorname{lip}_{\beta}([a,b], S)$ are dense in $\operatorname{lip}_{\alpha}([a,b], S)$. Next, we show that $C^{1}([a,b],S)$ is dense in $\operatorname{lip}_{\alpha}([a,b], S)$. It is easy to see that $C^{1}([a,b],S) \subseteq \operatorname{lip}_{\alpha}([a,b], S)$ and

where I = [a,b]. Thus, $C^{1}([a,b],S)$ is a closed subspace of $Lip_{1}([a,b], S)$. In fact, $C^{1}([a,b], S)$ is a proper subspace of $Lip_{1}([a,b], S)$. Using Lemmas 1 and γ we obtain the following approximation theorem.

Theorem 7. Let $0 \le \alpha \le 1$. Then $C^1([a,b],S)$ is dense in $\lim_{\alpha} ([a,b], S)$.

Keywords: Vector-valued Lipschitz space; Continuously differentiable vector-valued function; Vector-valued measure; Approximation.

^{*}Corresponding author: esmaeili@ardakan.ac.ir