AU - Sheibani Abdolyousefi, Marjan
AU - Bahmani Sangesari, Raham
AU - Ashrafi, Nahid
TI - Diagonal Matrix Reduction over Refinement Rings
PT - JOURNAL ARTICLE
TA - khu-mmr
JN - khu-mmr
VO - 8
VI - 3
IP - 3
4099 - http://mmr.khu.ac.ir/article-1-3106-en.html
4100 - http://mmr.khu.ac.ir/article-1-3106-en.pdf
SO - khu-mmr 3
ABĀ - Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement. Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N if and only if Mm ~Nm for all maximal ideal m of R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is a diagonal matrix. We also prove that for every refinement ring R, every regular matrix over R admits diagonal reduction if and only if every regular matrix over R/J(R) admits diagonal reduction.
CP - IRAN
IN - Sheibani@fgusem.ac.ir
LG - eng
PB - khu-mmr
PG - 132
PT - S
YR - 2022