Paper pages (271-276)
Introduction
Throughout this paper,
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image002.gif)
will denote a commutative ring with identity and
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image004.gif)
will denote the ring of integers.
Let
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image006.gif)
be an
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image008.gif)
-module. A submodule
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image010.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
is said to be
pure if
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image014.gif)
for every ideal
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image016.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image018.gif)
.
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
has
the copure sum property if the sum of any two copure submodules is again copure.
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
is said to be a
comultiplication module if for every submodule
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image010.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
there exists an ideal
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image016.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image008.gif)
such that
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image022.gif)
.
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image024.gif)
satisfies the
double annihilator conditions if for each ideal
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image016.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image008.gif)
, we have
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image027.gif)
.
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
is said to be a
strong comultiplication module if
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
is a comultiplication R-module which satisfies the double annihilator conditions. A submodule
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image029.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image024.gif)
is called
fully invariant if for every endomorphism
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image031.gif)
,
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image033.gif)
.
In [5], H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is copure submodules) and investigated the first properties of this class of modules. A submodule
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image010.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
is said to be
copure if
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image036.gif)
for every ideal
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image016.gif)
of
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image018.gif)
.
Material and methods
We say that an
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image008.gif)
-module
![](file:///C:Users1AppDataLocalTempmsohtmlclip11clip_image012.gif)
has
the copure intersection
property if the intersection of any two copure submodules is again copure. In this paper, we investigate the modules with the copure intersection property and obtain some related results.
Conclusion
The following conclusions were drawn from this research.
- Every distributive
-module has the copure intersection property.
- Every strong comultiplication
-module has the copure intersection property.
- An
-module
has the copure intersection property if and only if for each ideal
of
and copure submodules
of
we have
- If
is a
, then an
-module
has the copure intersection property if and only if
has the copure sum property.
- Let
, where
is a submodule of
. If
has the copure intersection property, then each
has the has the copure intersection property. The converse is true if each copure submodule of
is fully invariant../files/site1/files/62/12Abstract.pdf
Type of Study:
Original Manuscript |
Subject:
alg Received: 2018/05/2 | Revised: 2020/09/13 | Accepted: 2018/11/28 | Published: 2020/01/28 | ePublished: 2020/01/28