Search published articles


Showing 1 results for Quasi Duo-Ring

Shervin Sahebi,
Volume 7, Issue 3 (12-2021)
Abstract

We introduce the notion of Semi-Armendariz (resp. Semi-McCoy) rings, which are a subclass of J-Armendariz (resp. J-McCoy rings) and investigate their properties. A ring R is called Semi-Armendariz (Semi-McCoy) if  is Armendariz (McCoy). As special case, we show that the class of Semi-Armendariz (resp. Semi-McCoy) rings lies properly between the class of one-sided quasi-duo rings and the class of J-Armendariz (resp. J-McCoy) rings. We show that a ring R is Semi-Armendariz (resp. Semi-McCoy) iff R[[x]] is Semi-Armendariz (resp. Semi-McCoy) iff for any idempotent , eRe is Semi-Armendariz (resp. Semi-McCoy) iff the n-by-n upper triangular matrix ring Tn(R)  is Semi-Armendariz (resp. Semi-McCoy). But, by an example we show that for a ring R and n>1,  is not necessarily Semi-Armendariz (Semi-McCoy) and so R is not Morita invariant. At last, we prove that for an automorphism  a ring R is Semi-Armendariz (resp. Semi-McCoy) iff the Jordan structure of R ( is Semi-Armendariz (resp. Semi-McCoy) and so we identify the Jacobson radical of A.
./files/site1/files/%D8%B5%D8%A7%D8%AD%D8%A8%DB%8C-%DA%86%DA%A9%DB%8C%D8%AF%D9%87-_%D8%A7%D9%86%DA%AF%D9%84%DB%8C%D8%B3%DB%8C(1).pdf


 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Mathematical Researches

Designed & Developed by : Yektaweb