1- دانشگاه علم و فناوری مازندران ، le.goudarzi@abru.ac.ir
2- دانشگاه آیت الله بروجردی
چکیده: (688 مشاهده)
زیرجبر H از L را یک α -زیرجبر از L می گوییم هرگاه H دارای خاصیت α باشد. همچنین زیرجبر H از جبرلی L را α -متعدی می گوییم هرگاه هر α -زیرجبر از H ، یک α -زیرجبر از L باشد و آن زیرجبر را α -حساس می گوییم هرگاه برای هر α -زیرجبر K از H ، یک α -زیرجبر A از L موجود باشد به طوریکه A⋂H=K. این مفاهیم مشابه با مفاهیم زیرگروه های α-متعدی و α -حساس در نظریه گروه های متناهی هستند. در این مقاله، نتایج اصلی روی خواص پوشش-اجتناب، بیشین بودن، ایدآل بودن و α -ایدآل بودن است و به طورخاص زیرجبرهای α -متعدی و بیشین-حساس را مورد بررسی قرار می دهیم. به علاوه، تأثیر این مفاهیم را روی ساختار جبرهای لی متناهی بعد مورد بررسی قرار داده و به ویژه نتایجی در مورد جبرهای لی ابرحلپذیر بیان می کنیم.
نوع مطالعه:
مقاله مستقل |
موضوع مقاله:
جبر دریافت: 1400/8/21 | ویرایش نهایی: 1403/5/27 | پذیرش: 1403/3/24 | انتشار: 1403/4/20 | انتشار الکترونیک: 1403/4/20